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Abstract
The Ruijsenaars–Schneider systems are ‘discrete’ version of the Calogero–
Moser (C–M) systems in the sense that the momentum operator p appears in the
Hamiltonians as a polynomial in e±β ′p (β ′ is a deformation parameter) instead of
an ordinary polynomial in p in the hierarchies of C–M systems. We determine
the polynomials describing the equilibrium positions of the rational and
trigonometric Ruijsenaars–Schneider systems based on classical root systems.
These are deformations of the classical orthogonal polynomials, the Hermite,
Laguerre and Jacobi polynomials which describe the equilibrium positions
of the corresponding Calogero and Sutherland systems. The orthogonality
of the original polynomials is inherited by the deformed ones which satisfy
three-term recurrence and certain functional equations. The latter reduce to
the celebrated second-order differential equations satisfied by the classical
orthogonal polynomials.

PACS numbers: 02.20.−a, 02.30.Gp, 02.30.Ik

1. Introduction

Exactly solvable or quasi-exactly solvable multi-particle quantum mechanical systems have
many remarkable properties. By definition, the entire (or a part of the) spectrum and the
corresponding eigenfunctions are calculable by algebraic means. The corresponding classical
systems also share many ‘quantum’ features. For example, the frequencies of small oscillations
near the classical equilibrium are ‘quantized’ together with the eigenvalues of the associated
Lax matrices at the equilibrium. These phenomena have been explored extensively for multi-
particle dynamics based on root systems, in particular, for the Calogero and Sutherland systems
[1–3] by Corrigan–Sasaki [4]. Similar phenomena are also reported by Ragnisco–Sasaki [5]
for Ruijsenaars–Schneider systems [6–9], which are deformations of C–M systems.
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In this paper we will discuss one special aspect of the classical equilibria of exactly solvable
systems based on classical root systems, the rational and trigonometric Ruijsenaars–Schneider
systems. Namely, the determination of the equilibrium positions and their description in
terms of certain polynomials. It is known that for the Calogero and Sutherland systems, the
equilibrium positions are described by the zeros of the classical orthogonal polynomials, i.e.
the Hermite, Laguerre, Chebyshev, Legendre, Gegenbauer and Jacobi polynomials [4, 10, 11].
The Ruijsenaars–Schneider systems are ‘good’ deformation of the Calogero and Sutherland
systems. Here is one interesting piece of evidence. It was known [12] that the singular vectors
of the Virasoro and WN algebras, in the free field representation, are related to Jack polynomials
[13], the quantum eigenfunctions of the A type Sutherland systems. The deformed Virasoro
and WN algebras were discovered by using the relation between the Sutherland system and the
trigonometric Ruijsenaars–Schneider system of the A type root system [14]. Therefore, it is
expected that equilibrium positions of the rational and trigonometric Ruijsenaars–Schneider
systems would give certain ‘good’ deformation of the classical orthogonal polynomials:

Calogero−Sutherland

systems
equilibrium positions

classical
orthogonal polynomials

‘good’ deformation
‘good’ deformation

expected

Ruijsenaars−Schneider

systems
equilibrium positions

deformed classical
orthogonal polynomials

In the Ragnisco–Sasaki paper [5], based on numerical analysis, the explicit forms of the
lower degree members of the one-parameter deformation of the Hermite and Laguerre
polynomials were presented. The present authors continued the numerical analysis and
obtained the explicit forms of the lower degree members of the one and/or two-parameter
deformation of the Hermite polynomial, one-, two- and/or three-parameter deformation of
the Laguerre polynomial, one-parameter deformation of the Jacobi (and Gegenbauer and
Legendre) polynomials. They are also polynomials, or rational functions in the deformation
parameter(s) with integer coefficients.

Remarkably, the orthogonality of the original polynomials is inherited by the deformed
ones. The equations determining the equilibrium can be reformulated as functional
equations determining the polynomials. These functional equations are difference analogues
of the celebrated second-order differential equations satisfied by the classical orthogonal
polynomials. Three-term recurrence for the deformed polynomials, the necessary and
sufficient condition for orthogonality, can be derived from these functional equations.
Dynamical stability of the Hamiltonian system, or bounded-from-belowness of its potentials,
is achieved by restricting the parameter space of the coupling constants, usually by positive
coupling constants, which in turn guarantees the positive definiteness of the inner product
governing the orthogonal polynomials, the deformed as well as undeformed. These deformed
polynomials are not the so-called q-deformed versions of the above classical polynomials [15].

This paper is organized as follows. In section 2, first we recall the essence of the Calogero–
Sutherland systems and their equilibria, which are described by the Hermite, Laguerre and
Jacobi polynomials. Next the Hamiltonians and potentials of the Ruijsenaars–Schneider (R–S)
systems are briefly recapitulated, and two types of the rational systems and one trigonometric
systems for the classical root systems are introduced. Then the equations for their equilibrium
positions are written. For later use we review the relation between the orthogonal polynomials
and the three-term recurrence. Sections 3–5 give the main results of this paper. In section 3,
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we determine the equilibrium positions of the rational R–S systems for the A type root
system and the deformation of the Hermite polynomial is presented. For one-parameter
deformation case, we derive the explicit forms of the generating function and the weight
function of the inner product. In section 4, equilibrium positions of the rational R–S systems
for the B,C,D,BC type root system are determined and the deformation of the Laguerre
polynomial is presented together with the explicit forms of the functional equations and
three-term recurrence. In section 5, equilibrium positions of the trigonometric R–S systems
for the B,C,D,BC type root system are determined and the deformation of the Jacobi
(and Gegenbauer) polynomial is presented together with the explicit forms of the functional
equations and three-term recurrence. Classical orthogonal polynomials, e.g., the Hermite and
Laguerre, satisfy many interesting identities among themselves. Those having a root theoretic
explanation ( folding) are shown to be preserved after deformation. The final section is devoted
to a summary and comments. Identification of the deformed orthogonal polynomials within
the so-called Askey-scheme of hypergeometric orthogonal polynomials [16] is reported here.
The relation between the functional equation and the three-term recurrence is discussed in the
appendix.

2. Potentials and equilibrium positions

In this section, we set up models and present the equations for their equilibrium positions. We
consider a multi-particle classical mechanics governed by a classical Hamiltonian H(p, q).
The dynamical variables are the coordinates {qj |j = 1, . . . , r} and their canonically conjugate
momenta {pj |j = 1, . . . , r}. These will be denoted by vectors in R

r

q = t (q1, . . . , qr ), p = t (p1, . . . , pr),

in which r is the number of particles (and it is also the rank of the underlying root system �

except for the A case). The canonical equations of motion are

q̇j = ∂H(p, q)

∂pj

, ṗj = −∂H(p, q)

∂qj

. (2.1)

The equilibrium positions are the stationary solution

p = 0, q = q̄, (2.2)

in which q̄ satisfies

∂H(0, q)

∂qj

∣∣∣∣∣
q=q̄

= 0 (j = 1, . . . , r). (2.3)

We will discuss Ruijsenaars-type models associated with the classical root systems,
namely the Ar−1, Br, Cr , Dr and BCr . The fact that all the roots of the classical root systems
are neatly expressed in terms of the orthonormal basis of R

r makes formulation much simpler
than those systems based on the exceptional root systems. The sets of positive roots of the
classical root systems are

Ar−1: �+ = {ej − ek|1 � j < k � r},
Br : �L+ = {ej ± ek|1 � j < k � r}, �S+ = {ej |1 � j � r},
Cr : �S+ = {ej ± ek|1 � j < k � r}, �L+ = {2ej |1 � j � r},
Dr : �+ = {ej ± ek|1 � j < k � r},
BCr : �M+ = {ej ± ek|1 � j < k � r},

�S+ = {ej |1 � j � r}, �L+ = {2ej |1 � j � r},
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where {ej } is an orthonormal basis of R
r . The subscripts L,M and S stand for long, middle

and short roots, respectively.
It is well known that the non-simply laced root systems are obtained from simply laced

ones by folding. In the present case, the relevant ones are

A2r−1 → Cr, Dr+1 → Br, A2r → BCr. (2.4)

At the level of the dynamical variables and Hamiltonians, the above foldings are realized as

A2r−1 → Cr : p2r+1−j = −pj , q2r+1−j = −qj (j = 1, . . . , r), (2.5)

Dr+1 → Br : pr+1 = qr+1 = 0, (2.6)

A2r → BCr : p2r+2−j = −pj , q2r+2−j = −qj (j = 1, . . . , r),

pr+1 = qr+1 = 0. (2.7)

2.1. Calogero and Sutherland systems

For later comparison, we summarize the Calogero and Sutherland systems associated with the
classical root systems only, namely the Ar−1, Br, Cr,Dr and BCr .

The Hamiltonian of the classical Calogero and Sutherland systems is

HCS(p, q) = 1

2

r∑
j=1

p2
j + VC(q), (2.8)

where the classical potential VC is given below explicitly. For all cases this classical potential
VC can be written in terms of the prepotential W(q) [17]

VC(q) = 1

2

r∑
j=1

(
∂W(q)

∂qj

)2

. (2.9)

The equations for the equilibrium positions (2.3) reduce to the following equations:

∂W(q)

∂qj

∣∣∣∣∣
q=q̄

= 0 (j = 1, . . . , r). (2.10)

2.1.1. Calogero systems. The classical potential VC and prepotential W are

VC(q) = ω2

2

r∑
j=1

q2
j +

1

2

∑
ρ∈�+

g2
ρρ

2

(ρ · q)2
, (2.11)

W(q) = −ω

2

r∑
j=1

q2
j +

∑
ρ∈�+

gρ log|(ρ · q)|, (2.12)

where ω is the (positive) frequency of the harmonic confining potential and gρ are real positive
coupling constants depending on the length of the roots. They are: one coupling g for all
roots for the Ar−1 and Dr , two independent couplings gL and gS for Br and Cr corresponding
to the long and short roots, respectively. These conventions are the same for all other types of
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potentials considered in this paper. For example, the Cr model is

Cr : VC(q) = ω2

2

r∑
j=1

q2
j +

g2
S

2

r∑
j,k=1
j �=k

(
1

(qj − qk)2
+

1

(qj + qk)2

)
+

g2
L

2

r∑
j=1

1

q2
j

,

W(q) = −ω

2

r∑
j=1

q2
j +

gS

2

r∑
j,k=1
j �=k

log
∣∣q2

j − q2
k

∣∣ + gL

r∑
j=1

log|2qj |.

There is no distinction between the rational Br and Cr models because of the replacement
gS ↔ gL. The Dr model can be considered as a special case of the Br with gL = g and
gS = 0.

The systems obtained by folding (2.5)–(2.7) have a special ratio of couplings. They are

folded Cr : (gL, gS) = (
1
2 , 1

)
g, folded Br : (gL, gS) = (1, 2)g,

folded BCr : (gL, gM, gS) = (
1
2 , 1, 1

)
g.

(2.13)

The equations for the equilibrium position (2.10) are

Ar−1:
r∑

k=1
k �=j

1

q̄j − q̄k

= ω

g
q̄j , (2.14)

Br :
r∑

k=1
k �=j

2q̄j

q̄2
j − q̄2

k

= ω

gL

q̄j − gS

gL

1

q̄j

, (2.15)

Cr :
r∑

k=1
k �=j

2q̄j

q̄2
j − q̄2

k

= ω

gS

q̄j − gL

gS

1

q̄j

, (2.16)

Dr :
r∑

k=1
k �=j

2q̄j

q̄2
j − q̄2

k

= ω

g
q̄j . (2.17)

They determine the zeros of the Hermite and Laguerre polynomials. In other words, if
we define q̄j =

√
g

ω
yj for Ar−1, then the polynomial having {yj } as zeros is the Hermite

polynomial [10, 18, 4]:

2r

r∏
j=1

(x − yj ) = r!

[ r
2 ]∑

j=0

(−1)j (2x)r−2j

j !(r − 2j)!
def= Hr(x). (2.18)

For the Cr (or Br ) model let us define q̄j =
√

gS

ω
yj , α = gL

gS
− 1 then having

{
y2

j

}
as zeros is

the Laguerre polynomial [10, 18, 4]:

(−1)r

r!

r∏
j=1

(
x − y2

j

) =
r∑

j=0

(
r + α

r − j

)
(−x)j

r!
def= L(α)

r (x). (2.19)

For the Dr root system, it is the Laguerre polynomial L(−1)
r (x).
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The identities between the Hermite and Laguerre polynomials

2−2rH2r (x) = (−1)rr!L
(− 1

2 )
r (x2), (2.20)

2−2r−1H2r+1(x) = x(−1)r r!L
( 1

2 )
r (x2), (2.21)

are well known. The former identity (2.20) for the even degree Hermite polynomial can
be understood as a consequence of the folding of the root system A2r−1 → Cr , see (2.5).
Likewise the latter identity (2.21) for the odd degree Hermite polynomial can be understood
as a consequence of the folding of the root system A2r → BCr , see (2.7). Next let us consider
the folding Dr+1 → Br (2.6), which leads to the identity [4] among the Laguerre polynomials
of different indices:

(r + 1)L
(−1)
r+1 (x) = −xL(1)

r (x). (2.22)

We will see that these identities (2.20), (2.21) and (2.22) are also nicely deformed with one
parameter (4.46), (4.48) and (4.50) and with two parameters (4.47), (4.49) and (4.51).

2.1.2. Sutherland systems. The classical potential VC and prepotential W are (except for VC

of BCr )

VC(q) = 1

2

∑
ρ∈�+

g2
ρρ

2

sin2(ρ · q)
, (2.23)

W(q) =
∑
ρ∈�+

gρ log|sin(ρ · q)|, (2.24)

where gρ are real positive coupling constants. The classical potential VC of the BCr model is
given by

BCr : VC(q) = g2
M

2

r∑
j,k=1
j �=k

(
1

sin2(qj − qk)
+

1

sin2(qj + qk)

)
+ 2g2

L

r∑
j=1

1

sin2 2qj

+
gS(gS + 2gL)

2

r∑
j=1

1

sin2 qj

. (2.25)

The Br(Cr) potential is obtained by setting gL = 0, gM → gL (gS = 0, gM → gS).
The equations for the equilibrium position (2.10) are

Ar−1:
r∑

k=1
k �=j

cot(q̄j − q̄k) = 0, (2.26)

Br :
r∑

k=1
k �=j

(cot(q̄j − q̄k) + cot(q̄j + q̄k)) = −gS

gL

cot q̄j , (2.27)

Cr :
r∑

k=1
k �=j

(cot(q̄j − q̄k) + cot(q̄j + q̄k)) = −2
gL

gS

cot 2q̄j , (2.28)
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BCr :
r∑

k=1
k �=j

(cot(q̄j − q̄k) + cot(q̄j + q̄k)) = − gS

gM

cot q̄j − 2
gL

gM

cot 2q̄j , (2.29)

Dr :
r∑

k=1
k �=j

(cot(q̄j − q̄k) + cot(q̄j + q̄k)) = 0. (2.30)

The equilibrium positions of the Ar−1 model are related to the Chebyshev polynomial and
those of the other models are related to the Jacobi polynomials.

For the Ar−1, the equilibrium positions are ‘equally spaced’ and translational invariant,

q̄ = π

r

t (r, r − 1, . . . , 1) + ξ t (1, 1, . . . , 1), ξ ∈ R : arbitrary. (2.31)

We choose this constant shift ξ such that the ‘centre of mass’ coordinate vanishes,∑r
j=1 q̄j = 0:

q̄j = π(r + 1 − j)

r
− π(r + 1)

2r
= π

2
− π(2j − 1)

2r
= −q̄r+1−j (j = 1, . . . , r).

(2.32)

Then the degree r (the dimension of the vector representation) polynomial in x, having zeros
at {sin q̄j },

2r−1
r∏

j=1

(x − sin q̄j ) = 2r−1
r∏

j=1

(
x − cos

π(2j − 1)

2r

)
def= Tr(x), (2.33)

is the Chebyshev polynomial of the first kind, Tn(cos ϕ) = cos(nϕ).
For the solution {q̄j } of the BCr (2.29), cos 2q̄j is the zero of the Jacobi polynomial

P
(α,β)
r (x) with α = gS

gM
+ gL

gM
− 1 and β = gL

gM
− 1,

2−r

(
α + β + 2r

r

) r∏
j=1

(x − cos 2q̄j ) =
r∑

j=0

(
α + r

r − j

)(
α + β + r + j

j

)
2−j (x − 1)j

def= P (α,β)
r (x).

(2.34)

It is easily shown that q̄ ′
j = π

2 − q̄j satisfies (2.29) with α ↔ β, which implies P
(α,β)
n (−x) =

(−1)nP
(β,α)
n (x). For the solution {q̄j } of the Cr (2.28), cos 2q̄j is the zero of the Gegenbauer

polynomial C
(α+ 1

2 )
r (x) with α = gL

gS
− 1,

2r

(
α − 1

2 + r

r

) r∏
j=1

(x − cos 2q̄j )

=
(

2α + r

r

)(
α + r

r

)−1 r∑
j=0

(
α + r

r − j

)(
α + β + r + j

j

)
2−j (x − 1)j

def= C
(α+ 1

2 )
r (x).

(2.35)

This is a special case of P
(α,β)
r (x) with another normalization,

C
(α+ 1

2 )
r (x) =

(
2α + r

r

)(
α + r

r

)−1

P (α,α)
r (x). (2.36)

For the solution {q̄j } of the Br (2.27), cos 2q̄j is the zero of P (α,−1)
r (x) with α = gS

gL
− 1. For

the solution {q̄j } of the Dr (2.30), cos 2q̄j is the zero of P (−1,−1)
r (x).
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The known identities between the Chebyshev and Jacobi polynomials and between the
Jacobi polynomials can be understood as consequences of the folding:

A2r−1 → Cr : 21−2rT2r (x) = (−1)r
(

2r − 1

r

)−1

P
(− 1

2 ,− 1
2 )

r (1 − 2x2), (2.37)

A2r → BCr : 2−2rT2r+1(x) = x(−1)r
(

2r

r

)−1

P
( 1

2 ,− 1
2 )

r (1 − 2x2), (2.38)

Dr+1 → Br : 2(r + 1)P
(−1,−1)
r+1 (x) = r(x − 1)P (1,−1)

r (x). (2.39)

We will see in the following that the first two identities are not deformed but the third one is
nicely deformed (5.53).

The Gegenbauer polynomial and the Jacobi polynomial are also related by the quadratic
transformations:

C
(α+ 1

2 )

2n (x) = 22n

(
α − 1

2 + n

n

)(
2n

n

)−1

P
(α,− 1

2 )
n (2x2 − 1), (2.40)

C
(α+ 1

2 )

2n+1 (x) = 22n+1

(
α + 1

2 + n

n + 1

)(
2n + 1

n

)−1

xP
(α, 1

2 )
n (2x2 − 1). (2.41)

However, these identities do not seem to have a folding type explanation. Indeed, the deformed

Gegenbauer polynomials C
(α+ 1

2 )
n (x, δ) (2.35), C̃

(α+ 1
2 )

n (x, δ) (5.26) and the deformed Jacobi
polynomial P

(α,β)
n (x, δ) (5.2) do not satisfy this type of identities for generic δ.

2.2. Ruijsenaars-type systems

Following Ruijsenaars–Schneider [6] and van Diejen [7], the Hamiltonian of the Ruijsenaars
systems is (the deformation parameter β ′ of e±β ′p is set to unity, β ′ = 1)

H(p, q) =
r∑

j=1

(
cosh pj

√
Vj (q)V ∗

j (q) − 1

2
(Vj (q) + V ∗

j (q))

)
. (2.42)

The form of the function Vj = Vj (q) and its complex conjugate V ∗
j are determined by the

root system � as

Ar−1: Vj (q) = w(qj )

r∏
k=1
k �=j

v(qj − qk) (j = 1, . . . , r), (2.43)

Br, Cr,Dr, BCr : Vj (q) = w(qj )

r∏
k=1
k �=j

v(qj − qk)v(qj + qk) (j = 1, . . . , r). (2.44)

The elementary potential functions v and w depend on the nature of interactions (rational,
trigonometric, etc) and the root system �. Their explicit forms will be given below. When
V satisfies the simple identity

∑
j (Vj (q) + V ∗

j (q)) = const, the Hamiltonian (2.42) could be
replaced by a simpler one

H ′(p, q) =
r∑

j=1

cosh pj

√
Vj (q)V ∗

j (q), (2.45)
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which is obviously positive definite and usually used as a starting point for the trigonometric
(hyperbolic) interaction theory.

The above Hamiltonian (2.42) is a hyperbolic function of the momentum operator p
instead of a polynomial in the hierarchy of C–M systems or other ordinary dynamical systems.
In quantum theoretical setting this Hamiltonian causes finite shifts of the wavefunction in the
imaginary direction, i.e. cosh pψ(q) = 1

2 (ψ(q − ih̄) + ψ(q + ih̄)), in which h̄ is Planck’s
constant. This is why the R–S systems are sometimes called ‘discrete’ dynamical systems.

The equation (2.3) of equilibrium positions (2.2) can be simplified in the following way.
By expanding the Hamiltonian around the stationary solution (2.2), we obtain

H(p, q) = K(p) + P(q) + higher order terms in p, K(p) = 1

2

r∑
j=1

|Vj (q̄)|p2
j ,

(2.46)

and the ‘potential’ P is given by

P(q) =
r∑

j=1

(√
Vj (q)V ∗

j (q) − 1

2
(Vj (q) + V ∗

j (q))

)
= −1

2

r∑
j=1

(√
Vj (q) −

√
V ∗

j (q)
)2

.

(2.47)

This should be compared with the classical potential in the Calogero–Sutherland systems
(2.9). It is obvious that the equilibrium is achieved at the point(s) in which all the functions
Vj become real and positive:

Vj (q̄) = V ∗
j (q̄) > 0 (j = 1, 2, . . . , r). (2.48)

The equilibrium point is the absolute minimum of the potential P. The system of
equations (2.48) is invariant under any permutation of {q̄j }. For v and w considered in
this paper, they are also invariant under the transformation q → q ′ = −q. Except for the
A case, they are also invariant under the transformation q → q ′ = t (ε1q1, . . . , εrqr) with
εi = ±1.

The functions v and w considered in this paper have properties

v(−x) = v∗(x), w(−x) = w∗(x), (2.49)

which allow the folding (2.5)–(2.7) of the Ruijsenaars-type Hamiltonians:

HA2r−1(p, q)|p2r+1−j =−pj

q2r+1−j =−qj

= 2H̃ (p, q), ṽ(x) = vA(x), w̃(x) = wA(x)vA(2x),

(2.50)

HA2r (p, q)|p2r+2−j =−pj

q2r+2−j =−qj

= 2H̃ (p, q), ṽ(x) = vA(x), w̃(x) = wA(x)vA(x)vA(2x),

(2.51)

HDr+1(p, q)|pr+1=0,qr+1=0 = H̃ (p, q), ṽ(x) = vD(x), w̃(x) = wD(x)vD(x)2,

(2.52)

where H̃ is

H̃ (p, q) =
r∑

j=1

(
cosh pj

√
Ṽj (q)Ṽ ∗

j (q) − 1

2
(Ṽj (q) + Ṽ ∗

j (q))

)
,

(2.53)

Ṽj (q) = w̃(qj )

r∏
k=1
k �=j

ṽ(qj − qk)ṽ(qj + qk).
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The folded systems (2.50), (2.51) and (2.52) correspond to the folding A2r−1 → Cr ,
A2r → BCr and Dr+1 → Br , respectively. The coupling constants in these folded systems
are not independent as shown in (2.13).

2.2.1. Ruijsenaars–Calogero systems. The first example to be discussed is the ‘discrete’
analogue of the Calogero systems [1], to be called the Ruijsenaars–Calogero systems, which
were introduced by van Diejen for the classical root systems only [7, 8]. The original Calogero
systems [1] have the rational (1/(distance)2) potential plus the harmonic confining potential,
having two coupling constants g and ω for the systems based on the simply-laced root systems,
A and D, and three couplings ω and gL for the long roots and gS for the short roots in the B
and C root systems.

Two varieties (deformation) of ‘discrete’ Calogero systems are known. The first has two
(three for the non-simply-laced root systems) coupling constants g (gL and gS) and a which
corresponds to ω in the Calogero systems. The second has three (four for the non-simply-laced
root systems) coupling constants g (gL and gS) and a, b both of which correspond to ω. The
integrability (classical and quantum) of these systems was discussed by van Diejen in some
detail [7, 8]. The former can be considered as a limiting case (b → ∞) of the latter.

Linear confining potential case. The dynamical system is defined by giving the explicit forms
of the elementary potential functions v and w. For the simply-laced root systems A and D
they are

A,D: v(x) = 1 − i
g

x
, w(x) = 1 + i

x

a
, (2.54)

in which a and g are real positive coupling constants. For the non-simply-laced root systems
B,C and B̃C, we have

B: v(x) = 1 − i
gL

x
, w(x) =

(
1 + i

x

a

) (
1 − i

gS

2x

)2
, (2.55)

C: v(x) = 1 − i
gS

x
, w(x) =

(
1 + i

x

a

) (
1 − i

gL

x

)
, (2.56)

B̃C: v(x) = 1 − i
g0

x
, w(x) =

(
1 + i

x

a

) (
1 − i

g1

x

) (
1 − i

g2

x

)
, (2.57)

in which a, gL, gS, g0, g1, g2 are independent real positive coupling constants. Normalization
of the coupling constants is chosen such that they reduce to those of the Calogero models in
the small coupling limits discussed below. The D model is obtained from the B model by
gL = g and gS = 0. The B and C models are special cases of the B̃C model. In contrast to the
Calogero case, those based on the B and C systems are different. The difference of the length
of the roots is immaterial, since it can be absorbed by the coupling constants normalization. It
is rather elementary to derive the forms of the Hamiltonians of the B and C systems from those
of the D and A systems by folding (see (2.52) and (2.50)). In all these cases the ‘potential’ P
(2.47) grows linearly in |q| as |q| → ∞. Except for the B̃C case, there are simple identities:∑

j (Vj (q) + V ∗
j (q)) = const.

In the limit of small coupling constants, namely, by recovering the deformation
parameter β ′, (

pj ,
1

a
, g, gL, gS, g0, g1, g2

)
→ β ′

(
pj ,

1

a
, g, gL, gS, g0, g1, g2

)
, (2.58)
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and taking β ′ → 0 limit, the Hamiltonian (2.42) tends to that of the corresponding classical
Calogero system (2.8) with ω = 1

a
(B̃Cr tends to Cr with gS = g0, gL = g1 + g2)

1

β ′2 H(p, q) → HCalogero(p, q) + const. (2.59)

It is interesting to note that the equations determining the equilibrium (2.48), in general,
can be cast in a form which looks similar to the Bethe ansatz equation. For the elementary
potential (2.54)–(2.57), the equilibrium positions {q̄j } are determined by

Ar−1:
r∏

k=1
k �=j

q̄j − q̄k − ig

q̄j − q̄k + ig
= a − iq̄j

a + iq̄j

, (2.60)

Br :
r∏

k=1
k �=j

q̄j − q̄k − igL

q̄j − q̄k + igL

q̄j + q̄k − igL

q̄j + q̄k + igL

= a − iq̄j

a + iq̄j

(
2q̄j + igS

2q̄j − igS

)2

, (2.61)

Cr :
r∏

k=1
k �=j

q̄j − q̄k − igS

q̄j − q̄k + igS

q̄j + q̄k − igS

q̄j + q̄k + igS

= a − iq̄j

a + iq̄j

q̄j + igL

q̄j − igL

, (2.62)

B̃Cr :
r∏

k=1
k �=j

q̄j − q̄k − ig0

q̄j − q̄k + ig0

q̄j + q̄k − ig0

q̄j + q̄k + ig0
= a − iq̄j

a + iq̄j

q̄j + ig1

q̄j − ig1

q̄j + ig2

q̄j − ig2
, (2.63)

Dr :
r∏

k=1
k �=j

q̄j − q̄k − ig

q̄j − q̄k + ig

q̄j + q̄k − ig

q̄j + q̄k + ig
= a − iq̄j

a + iq̄j

. (2.64)

In the above small coupling limits, these equations reduce to (2.14)–(2.17). Thus the Bethe
ansatz-like equations (2.60)–(2.64) would give deformation of the Hermite and Laguerre
polynomials, as we will see in sections 3.1 and 4.1. They are not the so-called q-deformed
Hermite or Laguerre polynomials [15].

Quadratic confining potential case. In this case the elementary potential function v is the
same as before, but w is different. For the simply-laced root systems A and D, the elementary
potential functions are

A,D: v(x) = 1 − i
g

x
, w(x) =

(
1 + i

x

a

)(
1 + i

x

b

)
(a, b, g > 0). (2.65)

For the non-simply-laced root systems B,C and B̃C, we have (gL, gS, g0, g1, g2 > 0):

B: v(x) = 1 − i
gL

x
, w(x) =

(
1 + i

x

a

) (
1 + i

x

b

) (
1 − i

gS

2x

)2
, (2.66)

C: v(x) = 1 − i
gS

x
, w(x) =

(
1 + i

x

a

) (
1 + i

x

b

) (
1 − i

gL

x

)
, (2.67)

B̃C: v(x) = 1 − i
g0

x
, w(x) =

(
1 + i

x

a

) (
1 + i

x

b

) (
1 − i

g1

x

) (
1 − i

g2

x

)
. (2.68)

The D model can be considered as a special case of the B model by gL = g and gS = 0.
The B and C models are special cases of B̃C model. As in the previous case, the forms of
the elementary potential function w for B and C systems are determined from those of the
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D and A systems by folding (2.52), (2.50). In all these cases the ‘potential’ P (2.47) grows
quadratically in |q| as |q| → ∞. The small coupling limit (2.58) (and 1

b
→ β ′

b
) gives the

same classical Calogero systems as before (2.59), (2.8) with ω = 1
a

+ 1
b
.

The equations (2.48) determining the equilibrium positions {q̄j } for the elementary
potential (2.65)–(2.68) are expressed in a form similar to the Bethe ansatz equation:

Ar−1:
r∏

k=1
k �=j

q̄j − q̄k − ig

q̄j − q̄k + ig
= a − iq̄j

a + iq̄j

b − iq̄j

b + iq̄j

, (2.69)

Br :
r∏

k=1
k �=j

q̄j − q̄k − igL

q̄j − q̄k + igL

q̄j + q̄k − igL

q̄j + q̄k + igL

= a − iq̄j

a + iq̄j

b − iq̄j

b + iq̄j

(
2q̄j + igS

2q̄j − igS

)2

, (2.70)

Cr :
r∏

k=1
k �=j

q̄j − q̄k − igS

q̄j − q̄k + igS

q̄j + q̄k − igS

q̄j + q̄k + igS

= a − iq̄j

a + iq̄j

b − iq̄j

b + iq̄j

q̄j + igL

q̄j − igL

, (2.71)

B̃Cr :
r∏

k=1
k �=j

q̄j − q̄k − ig0

q̄j − q̄k + ig0

q̄j + q̄k − ig0

q̄j + q̄k + ig0
= a − iq̄j

a + iq̄j

b − iq̄j

b + iq̄j

q̄j + ig1

q̄j − ig1

q̄j + ig2

q̄j − ig2
, (2.72)

Dr :
r∏

k=1
k �=j

q̄j − q̄k − ig

q̄j − q̄k + ig

q̄j + q̄k − ig

q̄j + q̄k + ig
= a − iq̄j

a + iq̄j

b − iq̄j

b + iq̄j

. (2.73)

They define another type of deformation of the Hermite and Laguerre polynomials, since the
small coupling limit of the above Bethe ansatz-like equations gives the same equations as
before (2.14)–(2.17), determining the zeros of the Hermite and Laguerre polynomials, with
ω = 1

a
+ 1

b
. These will be discussed in sections 3.2 and 4.2.

2.2.2. Ruijsenaars–Sutherland systems. The discrete analogue of the Sutherland systems
[2], to be called the Ruijsenaars–Sutherland systems, was introduced originally by Ruijsenaars
and Schneider [6] for the A type root system. The quantum eigenfunctions of the A type
Ruijsenaars–Sutherland systems are called Macdonald polynomials [19], which are a one-
parameter deformation (q-deformation) of the Jack polynomials [13]. Here we will discuss
the Ruijsenaars–Sutherland systems for all the classical root systems, A,B,C,D and BC [8].
The structure of the functions {Vj (q)}, (2.43) and (2.44) is the same as in the Ruijsenaars–
Calogero systems, but the elementary potential functions v and w are trigonometric instead
of rational. Because of the identity

∑r
j=1{Vj (q) + V ∗

j (q)} = const, the Hamiltonian (2.42)
could be replaced by a simpler one (2.45).

The elementary potential functions v and w are

A,D: v(x) = 1 − i tanh g cot x, w(x) = 1, (2.74)

B: v(x) = 1 − i tanh gL cot x, w(x) =
(

1 − i tanh
gS

2
cot x

)2
, (2.75)

B ′: v(x) = 1 − i tanh gL cot x, w(x) = 1 − i tanh gS cot x, (2.76)

C: v(x) = 1 − i tanh gS cot x, w(x) = 1 − i tanh 2gL cot 2x, (2.77)

C ′: v(x) = 1 − i tanh gS cot x, w(x) = (1 − i tanh gL cot 2x)2, (2.78)



Equilibria of ‘discrete’ integrable systems and deformation of classical orthogonal polynomials 11853

B ′C: v(x) = 1 − i tanh gM cot x, w(x) = (1 − i tanh gS cot x)(1 − i tanh 2gL cot 2x),

(2.79)

with similar coupling constant notation as in the rational cases. Normalization of the coupling
constants is chosen such that they reduce to those of the Sutherland models in the small
coupling limits discussed below. The D model is the special case of the B model by gL = g

and gS = 0. The B ′ and C models are special cases of the B ′C model. As in the rational cases,
the forms of the elementary potential function w for the B and C systems are determined from
those of the D and A systems by folding (2.52), (2.50).

The original Sutherland models are obtained in the limit in which all the coupling
constant(s) become infinitesimally small. By recovering the deformation parameter β ′,

(pj , g, gL, gM, gS) → β ′(pj , g, gL, gM, gS), (2.80)

and taking β ′ → 0 limit, the Hamiltonian (2.42) tends to that of the corresponding classical
Sutherland system (2.8)

1

β ′2 H(p, q) → HSutherland(p, q) + const. (2.81)

In ‘strong’ coupling limits, g, gL, gM, gS → +∞, the elementary potential functions v

and w take simple forms:

v(x) → 1 − i cot x, w(x) → 1, 1 − i cot x, (1 − i cot x)2, etc. (2.82)

The deformed polynomials take simple forms in this limit as we will see in section 5.
The equations (2.48) determining the equilibrium positions {q̄j } for the elementary

potential (2.74)–(2.79) are expressed in a form similar to the Bethe ansatz equation:

Ar−1:
r∏

k=1
k �=j

tan(q̄j − q̄k) − i tanh g

tan(q̄j − q̄k) + i tanh g
= 1, (2.83)

Br :
r∏

k=1
k �=j

tan(q̄j − q̄k) − i tanh gL

tan(q̄j − q̄k) + i tanh gL

tan(q̄j + q̄k) − i tanh gL

tan(q̄j + q̄k) + i tanh gL

=
(

tan q̄j + i tanh gS

2

tan q̄j − i tanh gS

2

)2

,

(2.84)

B ′
r :

r∏
k=1
k �=j

tan(q̄j − q̄k) − i tanh gL

tan(q̄j − q̄k) + i tanh gL

tan(q̄j + q̄k) − i tanh gL

tan(q̄j + q̄k) + i tanh gL

= tan q̄j + i tanh gS

tan q̄j − i tanh gS

, (2.85)

Cr :
r∏

k=1
k �=j

tan(q̄j − q̄k) − i tanh gS

tan(q̄j − q̄k) + i tanh gS

tan(q̄j + q̄k) − i tanh gS

tan(q̄j + q̄k) + i tanh gS

= tan 2q̄j + i tanh 2gL

tan 2q̄j − i tanh 2gL

, (2.86)

C ′
r :

r∏
k=1
k �=j

tan(q̄j − q̄k) − i tanh gS

tan(q̄j − q̄k) + i tanh gS

tan(q̄j + q̄k) − i tanh gS

tan(q̄j + q̄k) + i tanh gS

=
(

tan 2q̄j + i tanh gL

tan 2q̄j − i tanh gL

)2

,

(2.87)

B ′Cr :
r∏

k=1
k �=j

tan(q̄j − q̄k) − i tanh gM

tan(q̄j − q̄k) + i tanh gM

tan(q̄j + q̄k) − i tanh gM

tan(q̄j + q̄k) + i tanh gM

= tan q̄j + i tanh gS

tan q̄j − i tanh gS

tan 2q̄j + i tanh 2gL

tan 2q̄j − i tanh 2gL

, (2.88)
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Dr :
r∏

k=1
k �=j

tan(q̄j − q̄k) − i tanh g

tan(q̄j − q̄k) + i tanh g

tan(q̄j + q̄k) − i tanh g

tan(q̄j + q̄k) + i tanh g
= 1. (2.89)

From the property mentioned after (2.48) and the fact that (2.83)–(2.89) are the equations
of {tan q̄j }, we can restrict q̄j to 0 � q̄j � π/2 (except for the Ar−1 case). In the small
coupling limit, these equations (2.83)–(2.89) tend to (2.26)–(2.30). Thus, the Bethe ansatz-
like equations (2.83)–(2.89) would give deformation of the Chebyshev and Jacobi polynomials
as we will see in section 5.

2.3. Orthogonal polynomials and three-term recurrences

It is well known that orthogonal polynomials satisfy three-term recurrence [18, 20] and
conversely a sequence of polynomials satisfying three-term recurrence are orthogonal with
respect to certain inner product with some weight function. Here we will introduce appropriate
notation by taking the classical orthogonal polynomials as examples.

Let {fn(x)}∞n=0 be a sequence of orthogonal polynomials with real coefficients. That
is fn(x) is a degree n polynomial in x and they are mutually orthogonal (fn, fm) = hnδn,m

(hn > 0) with respect to an (positive definite) inner product (f, g) = ∫
f (x)g(x)w(x) dx (w(x)

is a weight function). Let f monic
n (x) be a monic one, fn(x) = cnf

monic
n (x) = cn(x

n + · · ·).
Then f monic

n (x) satisfies three-term recurrence:

f monic
n+1 (x) − (x − an)f

monic
n (x) + bnf

monic
n−1 (x) = 0 (n � 0), (2.90)

where we have set f monic
−1 (x) = 0,3 and an (n � 0) and bn (n � 1, b0 is unnecessary, bn > 0)

are real numbers. The constants an, bn and hn are given by

an = (xfn(x), fn(x))

(fn(x), fn(x))
, bn = c2

n−1

c2
n

(fn(x), fn(x))

(fn−1(x), fn−1(x))
, hn = (1, 1)c2

n

n∏
j=1

bj .

(2.91)

Namely fn(x) satisfies the three-term recurrence

cn

cn+1
fn+1(x) − (x − an)fn(x) + bn

cn

cn−1
fn−1(x) = 0 (n � 0). (2.92)

For an = 0 (n � 0) case, fn(x) has a definite parity, fn(−x) = (−1)nfn(x), and the constant
term of the even polynomial is

f2n(0) = (−1)nc2n

n∏
j=1

b2j−1. (2.93)

Conversely, if {fn(x)} is defined by the three-term recurrence (2.90), namely, real numbers
an (n � 0), bn (n � 1, bn > 0) and cn (n � 0, cn �= 0) are given, then {fn(x)} is a sequence
of orthogonal polynomials with respect to some (positive definite) inner product (·, ·).

In the rest of this subsection we summarize the three-term recurrence, generating
functions, differential equations, etc for the Hermite, Laguerre and Jacobi polynomials for
later comparison with the corresponding quantities of the deformed polynomials.

3 Hereafter we adopt the convention f−1(x) = 0 and f0(x) = 1 for all the polynomials in this paper.
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The Hermite polynomials Hn(x) (2.18) are orthogonal with respect to the inner product
(f, g) = ∫ ∞

−∞ f (x)g(x) e−x2
dx, (hn = 2nn!

√
π) and satisfy the three-term recurrence (2.90)

with

an = 0, bn = n

2
, cn = 2n, (2.94)

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. (2.95)

The generating function and orthogonality are

G(t, x)
def=

∞∑
n=0

tn

n!
Hn(x) = e−t2+2xt , (G(t, x),G(s, x)) = √

π e2ts . (2.96)

The Laguerre polynomials L(α)
n (x) (2.19) are orthogonal with respect to the inner product

(f, g) = ∫ ∞
0 f (x)g(x)xα e−x dx, (hn(α) = (α + n + 1)/n!, Re α > −1) and satisfy the

three-term recurrence (2.90) with

an = 2n + 1 + α, bn = n(n + α), cn = (−1)n/n!, (2.97)

(n + 1)L
(α)
n+1(x) + (x − (2n + α + 1))L(α)

n (x) + (n + α)L
(α)
n−1(x) = 0. (2.98)

The Jacobi polynomials P
(α,β)
n (x) (2.34) are orthogonal with respect to (f, g) =∫ 1

−1 f (x)g(x)(1−x)α(1 +x)β dx,
(
hn(α, β) = 2α+β+1

α+β+2n+1
(α+n+1)(β+n+1)

n!(α+β+n+1)

)
and satisfy the three-

term recurrence (2.90) with

an = β2 − α2

d2nd2n+2
, bn = 4n(n + α)(n + β) × dn

d2n−1d
2
2nd2n+1

, (2.99)

cn = 2−n

(
α + β + 2n

n

)
, dm = α + β + m, (2.100)

2(n + 1)(α + β + n + 1)(α + β + 2n)P
(α,β)

n+1 (x)

− (α + β + 2n + 1)((α + β + 2n)(α + β + 2n + 2)x + α2 − β2)P (α,β)
n (x)

+ 2(α + n)(β + n)(α + β + 2n + 2)P
(α,β)

n−1 (x) = 0. (2.101)

The Gegenbauer polynomial C
(α+ 1

2 )
n (x) (2.35) is a special case of the Jacobi polynomial

C
(α+ 1

2 )
n (x) = (2α+n

n

)(
α+n

n

)−1
P (α,α)

n (x). The Chebyshev polynomial of the first kind Tn(x) is

also a special case of the Jacobi polynomial Tn(x) = 2−1
(2n−1

n

)−1
P

(− 1
2 ,− 1

2 )
n (x). The Legendre

polynomial is Pn(x) = P (0,0)
n (x).

The differential equations of the Hermite, Laguerre and Jacobi polynomials are

d2

dx2
Hn(x) − 2x

d

dx
Hn(x) + 2nHn(x) = 0, (2.102)

x
d2

dx2
L(α)

n (x) + (α + 1 − x)
d

dx
L(α)

n (x) + nL(α)
n (x) = 0, (2.103)

(1 − x2)
d2

dx2
P (α,β)

n (x) + (β − α − (α + β + 2)x)
d

dx
P (α,β)

n (x)

+ n(n + α + β + 1)P (α,β)
n (x) = 0. (2.104)
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3. Deformation of the Hermite polynomial

3.1. Linear confining potential case (one-parameter deformation)

For the solution {q̄j } of the Ar−1 equation (2.60), let us define

q̄j = √
agyj , δ = g

a
, (3.1)

and introduce a degree r polynomial in x having zeros at {yj }:

Hr(x, δ)
def= 2r

r∏
j=1

(x − yj ). (3.2)

It is a deformation of the Hermite polynomial (2.18) such that

lim
δ→0

Hr(x, δ) = Hr(x). (3.3)

If {q̄j } is a solution of (2.60), so is {−q̄j }, which would imply that the deformed polynomial
Hr(x, δ) has a definite parity

Hr(−x, δ) = (−1)rHr(x, δ), (3.4)

as with the original Hermite polynomial Hr(−x) = (−1)rHr(x).
The equation for the equilibrium (2.60) can be written as (we replace r by n)

n∏
k=1

yj − yk − i
√

δ

yj − yk + i
√

δ
=

yj + i 1√
δ

yj − i 1√
δ

. (3.5)

From this equation, we obtain the following functional equation for Hn(x, δ) (n � 1):(
x + i

1√
δ

)
Hn(x + i

√
δ, δ) −

(
x − i

1√
δ

)
Hn(x − i

√
δ, δ) = 2iAnHn(x, δ), (3.6)

because the LHS is i times a degree n polynomial in x with real coefficients which vanishes
at x = yj . Here An = An(δ) is a real constant. This functional equation contains all the
information of the equilibrium. The number of unknown coefficients (coefficient of xk term
of Hn(x, δ) (k = 0, 1, . . . , n− 1) and An) and the number of equations (coefficient of xk term
of (3.6) (k = 0, 1, . . . , n)) are both n. The constant An is determined by the coefficient of xn

term of this equation,

An = 1√
δ
(1 + nδ). (3.7)

The functional equation (3.6) can be written as a difference equation,

D2
x, 1

2 i
√

δ
Hn(x, δ) − 2xDx,i

√
δHn(x, δ) + 2nHn(x, δ) = 0, (3.8)

where Dx,h is a (central) difference operator,

Dx,hf (x) = f (x + h) − f (x − h)

2h
. (3.9)

In the δ → 0 limit, (3.6) reduces to the differential equation of the Hermite polynomial (2.102).
The uniqueness (up to normalization) of the solution of the functional equation (3.6) is

easily shown (proposition A.1). Therefore, it is sufficient to construct one solution of (3.6)
explicitly. This is done by using the three-term recurrence (see the appendix). The result is as
follows; the functional equation (3.6) implies that the deformed Hermite polynomial Hn(x, δ)
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satisfies the three-term recurrence (2.90) with

an = 0, bn = n

2

(
1 +

n − 1

2
δ

)
, cn = 2n, (3.10)

Hn+1(x, δ) − 2xHn(x, δ) + (2n + n(n − 1)δ)Hn−1(x, δ) = 0. (3.11)

Since δ is positive in this case (3.1), bn is also positive. Therefore, Hn(x, δ) is a set of
orthogonal polynomials with respect to some positive definite inner product.

Here we present another derivation of this three-term recurrence. Let us consider the
generating function

G(t, x, δ) =
∞∑

n=0

tn

n!
Hn(x, δ), (3.12)

which satisfies(
(1 + δt2)

∂

∂t
+ 2(t − x)

)
G(t, x, δ) = 0, (3.13)

as a consequence of the three-term recursion (3.11). This linear differential equation with the
initial condition G(0, x, δ) = 1 can be easily solved and we obtain

G(t, x, δ) =
exp

(
2x arctan

√
δt√

δ

)
(1 + δt2)

1
δ

. (3.14)

In the δ → 0 limit, this generating function tends to that of the Hermite polynomial (2.96),

lim
δ→0

G(t, x, δ) = e−t2
e2xt = e−t2+2xt = G(t, x). (3.15)

The functional equation of G(t, x, δ) is obtained from (3.6):(
x + i

1√
δ

)
G(t, x + i

√
δ, δ) −

(
x − i

1√
δ

)
G(t, x − i

√
δ, δ) = 2i√

δ

(
1 + δt

∂

∂t

)
G(t, x, δ).

(3.16)

Since the solution of (3.6) is unique (up to normalization), it is sufficient to show that (3.14)
satisfies this functional equation. This can be easily verified by explicit calculation, in which
the following formula derived from (3.14) is useful,

G(t, x ± i
√

δ, δ) = 1 ± i
√

δt

1 ∓ i
√

δt
G(t, x, δ). (3.17)

The explicit form of the inner product (f, g) = ∫ ∞
−∞ f (x)g(x)w(x, δ) dx, i.e. the weight

function w(x, δ) is determined by using the generating function. Here we list main results
only without derivation. Let us fix its normalization by (1, 1)δ = √

π . From the general
theory (2.91), the orthogonality of Hn(x, δ) is

(Hn(x, δ),Hm(x, δ))δ = δn,mhn, hn = √
π2nn!

n−1∏
j=0

(
1 +

1

2
jδ

)
, (3.18)

which leads to

(G(t, x, δ),G(s, x, δ))δ = √
π(1 − δts)−

2
δ . (3.19)

Here we have used the identity

F(x) =
∞∑

n=0

xn

n!

n−1∏
j=0

(
1 +

1

2
jδ

)
=

(
1 − 1

2
δx

)− 2
δ

. (3.20)
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The weight function is expressed as

w(x, δ) =
∫ ∞

−∞

dt√
π

cos 2xt

(cosh
√

δt)
2
δ

= 2
2
δ
−1

√
πδ

B
(1

δ
+ i

x√
δ
,

1

δ
− i

x√
δ

)
(3.21)

= 2
2
δ
−1

√
πδ


(

1
δ

+ i x√
δ

)


(
1
δ

− i x√
δ

)


(
2
δ

) = 2
2
δ
−1

√
πδ

∣∣(
1
δ

+ i x√
δ

)∣∣2


(

2
δ

) . (3.22)

The undeformed limit of the weight function limδ→0 w(x, δ) = e−x2
can be verified by using

the asymptotic expansion of the -function. The Taylor series of w(x, δ) in powers of δ reads

w(x, δ) = e−x2

(
1 +

δ

24
(3 − 12x2 + 4x4) +

δ2

5760
(45 − 1320x2 + 2280x4 − 864x6 + 80x8)

+
δ3

2 903 040
(−14 175 − 71 820x2 + 865 620x4 − 1 042 272x6 + 386 928x8

− 52 416x10 + 2240x12) + · · ·
)

. (3.23)

Among many interesting properties of Hn(x, δ), we present only

(i) H2n(0, δ) = (−1)n
(2n)!

n!

n−1∏
j=0

(1 + jδ), see (2.93), (3.24)

(ii)
d

dx
Hn(x, δ) = 2

[ n−1
2 ]∑

k=0

(2k)!

(
n

2k + 1

)
(−δ)kHn−1−2k(x, δ), (3.25)

which is a deformation of d
dx

Hn(x) = 2nHn(x).

Remark: We may take the three-term recurrence (3.11) as the definition of the deformed
Hermite polynomial Hn(x, δ) for an arbitrary (complex) parameter δ. Then Hn(x, δ) is a
polynomial in x of degree n and in δ of degree

[
n
2

]
with integer coefficients. We will not repeat

similar remarks which are valid for almost all the deformed polynomials in this paper.

3.2. Quadratic confining potential case (two-parameter deformation)

For the solution {q̄j } of the Ar−1 equation (2.69), let us define

q̄j = √
agyj , δ = g

a
, ε = a

b
, (3.26)

and introduce a degree r polynomial in x having zeros at {yj }:

Hr(x, δ, ε)
def= 2r

r∏
j=1

(x − yj ). (3.27)

It is a further deformation of the deformed Hermite polynomial defined previously,

lim
ε→0

Hr(x, δ, ε) = Hr(x, δ), Hr(−x, δ, ε) = (−1)rHr(x, δ, ε). (3.28)

The symmetry between the two parameters a ↔ b is expressed as

Hr(x, δε, ε−1) = ε
r
2 Hr

(
ε− 1

2 x, δ, ε
)
. (3.29)
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If we define Ĥ r

(
x, δ1

def= g

a
= δ, δ2

def= g

b
= δ

ε

) def= √
1 + ε

r
Hr

(
x√
1+ε

, δ, ε
)
, then this symmetry

is more manifest, Ĥ r (x, δ1, δ2) = Ĥ r (x, δ2, δ1).
The equation for the equilibrium (2.69) can be written as (we replace r by n)

n∏
k=1

yj − yk − i
√

δ

yj − yk + i
√

δ
= −

yj + i 1√
δ

yj − i 1√
δ

yj + i 1
ε
√

δ

yj − i 1
ε
√

δ

. (3.30)

From this equation, we obtain the following functional equation for Hn(x, δ, ε) (n � 1):(
x + i

1√
δ

) (
x + i

1

ε
√

δ

)
Hn(x + i

√
δ, δ, ε) +

(
x − i

1√
δ

)(
x − i

1

ε
√

δ

)
Hn(x − i

√
δ, δ, ε)

= 2(Anx
2 + Bnx + Cn)Hn(x, δ, ε), (3.31)

because the LHS is a degree n + 2 polynomial in x with real coefficients which vanishes at
x = yj . Here An = An(δ, ε), Bn = Bn(δ, ε) and Cn = Cn(δ, ε) are real constants:

An = 1, Bn = 0, Cn = −
((

1

δ
+ n

)
ε−1 + n +

1

2
n (n − 1) δ

)
. (3.32)

This functional equation contains all the information of the equilibrium. The above functional
equation (3.31) reduces to that of Hn(x, δ) (3.6) in a proper limit ε → 0. This functional
equation can be written as a difference equation,

(1 − δεx2)D2
x, 1

2 i
√

δ
Hn(x, δ, ε) − 2(1 + ε)xDx,i

√
δHn(x, δ, ε)

+ 2n

(
1 +

(
1 +

n − 1

2
δ

)
ε

)
Hn(x, δ, ε) = 0. (3.33)

The functional equation (3.31) implies (see the appendix) the three-term recurrence (2.90)
for the deformed Hermite polynomial Hn(x, δ, ε) with

an = 0, bn = n

2

(
1 +

n − 1

2
δ

) (
1 +

n − 1

2
δε

)
dn

d2n−1d2n+1
, cn = 2n, (3.34)

dm = 1 +

(
1 +

m − 2

2
δ

)
ε, (3.35)

Hn+1(x, δ, ε)−2xHn(x, δ, ε)+(2n + n(n − 1)δ)

(
1 + n−1

2 δε
)
dn

d2n−1d2n+1
Hn−1(x, δ, ε) = 0. (3.36)

Since δ and ε are positive in this case (3.26), bn is also positive. From this three-term
recurrence, we obtain the differential equation for the generating function G(t, x, δ, ε) =∑∞

n=0
tn

n!Hn(x, δ, ε),(
(d2n−1d2n+1)

∣∣
n→t ∂

∂t

(
∂

∂t
− 2x

)
+

(
4

n
d2n−1d2n+1bn

) ∣∣∣∣
n→t ∂

∂t

t

)
G(t, x, δ, ε) = 0, (3.37)

which is a third-order linear differential equation with respect to t. The special case δ = 0
gives the original Hermite polynomial, Hn(x, 0, ε) = (

√
1 + ε)−nHn(

√
1 + εx). The value at

the origin of the even polynomial shows a characteristic deformation pattern, see (2.93):

H2n(0, δ, ε) = (−1)n
(2n)!

n!

n−1∏
j=0

(1 + jδ)(1 + jδε)

1 +
(
1 +

(
j + n − 1

2

)
δ
)
ε
. (3.38)



11860 S Odake and R Sasaki

4. Deformation of the Laguerre polynomial

4.1. Linear confining potential case (one- or two-parameter deformation)

B̃Cr : For the solution {q̄j } of the B̃Cr equation (2.63), let us define

q̄j = √
ag0yj , δ = g0

a
, α = g1 + g2

g0
− 1, γ = g1g2

g2
0

, (4.1)

and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L(α)
r (x, γ, δ)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.2)

It is a two-parameter deformation of the Laguerre polynomial such that

lim
δ→0

L(α)
r (x, γ, δ) = L(α)

r (x). (4.3)

The equation for the equilibrium (2.63) can be written as (we replace r by n)
n∏

k=1

(yj − i
√

δ)2 − y2
k

(yj + i
√

δ)2 − y2
k

= yj − i
√

δ
2

yj + i
√

δ
2

yj + i 1√
δ

yj − i 1√
δ

y2
j + i(α + 1)

√
δyj − γ δ

y2
j − i(α + 1)

√
δyj − γ δ

. (4.4)

From this equation, we obtain the following functional equation for L(α)
n (x, γ, δ) (n � 1):

1

y

((
y − i

√
δ

2

)(
y + i

1√
δ

)
(y2 + i(α + 1)

√
δy − γ δ)L(α)

n ((y + i
√

δ)2, γ, δ)

−
(

y + i

√
δ

2

) (
y − i

1√
δ

)
(y2 − i(α + 1)

√
δy − γ δ)L(α)

n ((y − i
√

δ)2, γ, δ)

)
= 2i(Any

2 + Bn)L
(α)
n (y2, γ, δ), (4.5)

because the LHS is i times a degree 2n + 2 even polynomial in y with real coefficients which
vanishes at y = ±yj . Here An = A(α)

n (γ, δ) and Bn = B(α)
n (γ, δ) are real constants:

An = 1√
δ

(
1 +

(
2n + α +

1

2

)
δ

)
, Bn =

√
δ

2
(α + 1 − 2γ + (n + γ )δ). (4.6)

This functional equation contains all the information of the equilibrium. The functional
equation can be written as a difference equation,((

1 +

(
α +

1

2

)
δ

)
y2 +

(
α + 1

2
− γ

)
δ +

1

2
γ δ2

)
D2

y, 1
2 i

√
δ
L(α)

n (y2, γ, δ)

+ (−2y3 + (2α + 1 + (2γ − α − 1)δ)y + γ δy−1)Dy,i
√

δL
(α)
n (y2, γ, δ)

+ (4ny2 + nδ)L(α)
n (y2, γ, δ) = 0. (4.7)

In the δ → 0 limit, it becomes,

y
d2

dy2
L(α)

n (y2) + (2α + 1 − 2y2)
d

dy
L(α)

n (y2) + 4nyL(α)
n (y2) = 0, (4.8)

which is equivalent to the differential equation of the Laguerre polynomial (2.103).
By the same argument as Hn(x, δ), see the appendix, the functional equation (4.5) implies

that the deformed Laguerre polynomial L(α)
n (x, γ, δ) satisfies the three-term recurrence (2.90)

with

an = 2n + α + 1 + (n(2n + 1) + 2nα + γ )δ, (4.9)
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bn = n(n + α)(1 + (2n + α − 1)δ + ((n − 1)(n + α) + γ )δ2), cn = (−1)n/n!, (4.10)

(n + 1)L
(α)
n+1(x, γ, δ) + (x − (2n + α + 1 + (n(2n + 1) + 2nα + γ )δ))L(α)

n (x, γ, δ)

+ (n + α)(1 + (2n + α − 1)δ + ((n − 1)(n + α) + γ )δ2)L
(α)
n−1(x, γ, δ) = 0.

(4.11)

In this case (4.1), the parameter ranges are δ, γ > 0 and α > −1. So bn is positive. Therefore,
L(α)

n (x, γ, δ) is a set of orthogonal polynomials with respect to some positive definite inner
product. From this three-term recurrence we obtain the differential equation for the generating
function G(α)(t, x, γ, δ) = ∑∞

n=0 tnL(α)
n (x, γ, δ),(

∂

∂t
+ x − an

∣∣∣∣
n→t ∂

∂t

+
bn

n

∣∣∣∣
n→t ∂

∂t

t

)
G(α)(t, x, γ, δ) = 0, (4.12)

which is a third-order linear differential equation with respect to t.

Cr : For the solution {q̄j } of the Cr equation (2.62), let us define

q̄j = √
agSyj , δ = gS

a
, α = gL

gS

− 1, (4.13)

and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L(α)
r (x, δ)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.14)

This is a deformation of the Laguerre polynomial such that limδ→0 L(α)
r (x, δ) = L(α)

r (x), and
obviously it is a special case of L(α)

n (x, γ, δ),

L(α)
n (x, δ) = L(α)

n (x, 0, δ). (4.15)

The functional equation for L(α)
n (x, δ) is easily obtained from that of L(α)

n (x, γ, δ) (4.5)
and will not be presented. The three-term recurrence for L(α)

n (x, δ) reads

(n + 1)L
(α)
n+1(x, δ) + (x − (2n + α + 1 + n(2n + 2α + 1)δ)) L(α)

n (x, δ)

+ (n + α) (1 + (n − 1)δ) (1 + (n + α)δ) L
(α)
n−1(x, δ) = 0, (4.16)

The value at the origin shows a simple deformation pattern

L(α)
n (0, δ) =

(n + α

n

) n−1∏
j=0

(1 + jδ). (4.17)

Br : For the solution {q̄j } of the Br equation (2.61), let us define

q̄j = √
agLyj , δ = gL

a
, α = gS

gL

− 1, (4.18)

and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L̃(α)
r (x, δ)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.19)

This is a deformation of the Laguerre polynomial such that limδ→0 L̃(α)
r (x, 0) = L(α)

r (x), and
obviously it is a special case of L(α)

n (x, γ, δ)

L̃(α)
n (x, δ) = L(α)

n

(
x, 1

4 (α + 1)2, δ
)
. (4.20)
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The functional equation of L̃(α)
n (x, δ) is easily obtained from that of L(α)

n (x, γ, δ) (4.5) and
will not be presented. The three-term recurrence for L̃(α)

n (x, δ) reads

(n + 1)L̃
(α)
n+1(x, δ) +

(
x −

(
2n + α + 1 +

(
n(2n + 2α + 1) +

1

4
(α + 1)2

)
δ

))
L̃(α)

n (x, δ)

+ (n + α)

(
1 +

(
n +

α − 1

2

)
δ

)2

L̃
(α)
n−1(x, δ) = 0. (4.21)

Dr : As in the Calogero systems, the Dr is a special case gS = 0 of the Br theory described by
L̃(−1)

r (x, δ) = L(−1)
r (x, δ), which has a zero at x = 0 for all r.

4.2. Quadratic confining potential case (two- or three-parameter deformation)

B̃Cr : For the solution {q̄j } of the B̃Cr equation (2.72), let us define

q̄j = √
ag0yj , δ = g0

a
, ε = b

a
, α = g1 + g2

g0
− 1, γ = g1g2

g2
0

, (4.22)

and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L(α)
r (x, γ, δ, ε)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.23)

It is a further deformation of the deformed Laguerre polynomial defined previously,

lim
ε→0

L(α)
r (x, γ, δ, ε) = L(α)

r (x, γ, δ). (4.24)

The symmetry between the two parameters a ↔ b is expressed as

L(α)
r (x, γ, δε, ε−1) = εrL(α)

r (ε−1x, γ, δ, ε). (4.25)

If we define L̂(α)
r

(
x, γ, δ1

def= g

a
= δ, δ2

def= g

b
= δ

ε

) def= (1 + ε)rL(α)
r

(
x

1+ε
, γ, δ, ε

)
, then this

symmetry is more manifest, L̂(α)
r (x, γ, δ1, δ2) = L̂(α)

r (x, γ, δ2, δ1).
The equation for the equilibrium (2.72) can be written as (we replace r by n)

n∏
k=1

(yj − i
√

δ)2 − y2
k

(yj + i
√

δ)2 − y2
k

= −yj − i
√

δ
2

yj + i
√

δ
2

yj + i 1√
δ

yj − i 1√
δ

yj + i 1
ε
√

δ

yj − i 1
ε
√

δ

y2
j + i(α + 1)

√
δyj − γ δ

y2
j − i(α + 1)

√
δyj − γ δ

. (4.26)

The equivalent functional equation for L(α)
n (x, γ, δ, ε) (n � 1) reads

1

y

( (
y − i

√
δ

2

) (
y + i

1√
δ

) (
y + i

1

ε
√

δ

)
(y2 + i(α + 1)

√
δy − γ δ)L(α)

n ((y + i
√

δ)2, γ, δ, ε)

+

(
y + i

√
δ

2

) (
y − i

1√
δ

)(
y − i

1

ε
√

δ

)
(y2 − i(α + 1)

√
δy − γ δ)

×L(α)
n ((y − i

√
δ)2, γ, δ, ε)

)
= 2(Any

4 + Bny
2 + Cn)L

(α)
n (y2, γ, δ, ε), (4.27)

because the LHS is a degree 2n + 4 even polynomial in y with real coefficients which vanishes
at y = ±yj . Here An = A(α)

n (γ, δ, ε), Bn = B(α)
n (γ, δ, ε) and Cn = C(α)

n (γ, δ, ε) are real
constants:
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An = 1, (4.28)

Bn = −
(

δ−1 + 2n + α +
1

2

)
ε−1 −

(
2n + α +

1

2

)
−

(
γ − α + 1

2
+ 2n(n + α)

)
δ, (4.29)

Cn = −1

2
(α + 1 − 2γ + (n + γ )δ)ε−1 − 1

2
(n + γ )δ − 1

2
n(n + α)δ2. (4.30)

This functional equation contains all the information of the equilibrium. In a proper limit
ε → 0, the above functional equation (4.27) reduces to that of L(α)

n (x, γ, δ) (4.5). This
functional equation can be written as a difference equation as previous examples.

The functional equation (4.27) implies (see the appendix) that the deformed Laguerre
polynomial L(α)

n (x, γ, δ, ε) satisfies the three-term recurrence (2.90) with,

an = 2n + α + 1 +
X0 + X1ε + X2ε

2

d2nd2n+2
, (4.31)

bn = n(n + α)(1 + (2n + α − 1)δ + ((n − 1)(n + α) + γ )δ2)

× (1 + (1 + (n − 1)δ)ε) (1 + (2n + α − 1)δε + ((n − 1)(n + α) + γ )δ2ε2)

× dn

d2n−1d
2
2nd2n+1

, cn = (−1)n/n!, (4.32)

dm = 1 + (1 + (m + α − 1)δ) ε. (4.33)

Here X0, X1 and X2 are

X0 = (n(2n + 1) + 2nα + γ ) δ, (4.34)

X1 = −(2n + α + 1) − (2n(n + α + 1) + (α + 1)2 − 2γ )δ

+ (n(4n2 + (6α + 1)n + 2α2 − 1) + (2n + α − 1)γ )δ2, (4.35)

X2 = −(2n + α + 1) − (6n2 + 3(2α + 1)n + 2α(α + 1) − γ )δ − (4n3 + 3(2α + 1)n2

+ (4α2 + 4α − 1)n + (α − 1)(α + 1)2 − (2n + α − 1)γ )δ2

+ n(n + α)(2n(n + α) − α − 1 + 2γ )δ3. (4.36)

Namely L(α)
n (x, γ, δ, ε) satisfies

(n + 1)L
(α)
n+1(x, γ, δ, ε) + (x − an)L

(α)
n (x, γ, δ, ε) +

1

n
bnL

(α)
n−1(x, γ, δ, ε) = 0. (4.37)

In this case (4.22), the parameter ranges are δ, ε, γ > 0 and α > −1. So bn is positive.
From this three-term recurrence we obtain the differential equation for the generating function
G(α)(t, x, γ, δ, ε) = ∑∞

n=0 tnL(α)
n (x, γ, δ, ε),((

d2n−1d
2
2nd2n+1d2n+2

)∣∣
n→t ∂

∂t

(
∂

∂t
+ x

)
− (

d2n−1d
2
2nd2n+1d2n+2an

)∣∣
n→t ∂

∂t

+

(
1

n
d2n−1d

2
2nd2n+1d2n+2bn

)∣∣∣∣
n→t ∂

∂t

t

)
G(α)(t, x, γ, δ, ε) = 0, (4.38)

which is an eighth-order linear differential equation with respect to t. The special case of
δ = 0 gives the original Laguerre polynomial, L(α)

n (x, γ, 0, ε) = (1 + ε)−nL(α)
n ((1 + ε)x).

Cr : For the solution {q̄j } of the Cr equation (2.71), let us define

q̄j = √
agSyj , δ = gS

a
, ε = b

a
, α = gL

gS

− 1, (4.39)
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and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L(α)
r (x, δ, ε)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.40)

This is a further deformation of the deformed Laguerre polynomial defined previously such that
limε→0 L(α)

r (x, δ, ε) = L(α)
r (x, δ) (4.14), and obviously it is a special case of L(α)

r (x, γ, δ, ε),

L(α)
r (x, δ, ε) = L(α)

r (x, 0, δ, ε). (4.41)

The value at the origin shows a characteristic deformation pattern

L(α)
n (0, δ, ε) =

(
n + α

n

) n−1∏
j=0

(1 + jδ)(1 + jδε)

1 + (1 + (α + j + r)δ)ε
. (4.42)

Br : For the solution {q̄j } of the Br equation (2.70), let us define

q̄j = √
agLyj , δ = gL

a
, ε = b

a
, α = gS

gL

− 1, (4.43)

and introduce a degree r polynomial in x, having zeros at
{
y2

j

}
:

L̃(α)
r (x, δ, ε)

def= (−1)r

r!

r∏
j=1

(
x − y2

j

)
. (4.44)

This is a further deformation of the deformed Laguerre polynomial defined previously such that
limε→0 L̃(α)

r (x, δ, ε) = L̃(α)
r (x, δ) (4.19), and obviously it is a special case of L(α)

r (x, γ, δ, ε),

L̃(α)
r (x, δ, ε) = L(α)

r

(
x, 1

4 (α + 1)2, δ, ε
)
. (4.45)

Dr : As in the Calogero systems, the Dr is a special case gS = 0 of the Br theory described by
L̃(−1)

r (x, δ, ε) = L(−1)
r (x, δ, ε), which has a zero at x = 0 for all r.

Deformation of the identities. Before going to the systems with trigonometric potentials, let
us present the one- and two-parameter deformation of the identities between the Hermite and
Laguerre polynomials, (2.20) and (2.21), which could be considered as consequences of the
folding (2.5)–(2.7) and (2.50)–(2.52) of the rational potentials. The one- and two-parameter
deformation of the even degree identities (2.20) are

2−2rH2r (x, δ) = (−1)rr!L
(− 1

2 )
r (x2, δ), (4.46)

2−2rH2r (x, δ, ε) = (−1)r r!L
(− 1

2 )
r (x2, δ, ε), (4.47)

which are connected with the folding A2r−1 → Cr (2.5). The one- and two-parameter
deformation of the odd degree identities (2.21) are

2−2r−1H2r+1(x, δ) = x(−1)r r!L
( 1

2 )
r

(
x2, 1

2 , δ
)
, (4.48)

2−2r−1H2r+1(x, δ, ε) = x(−1)r r!L
( 1

2 )
r

(
x2, 1

2 , δ, ε
)
, (4.49)

which are related to the folding A2r → B̃Cr (2.7). The one- and two-parameter deformation
of the identities between Laguerre polynomials (2.22) are

(r + 1)L̃
(−1)
r+1 (x, δ) = −xL̃(1)

r (x, δ), (4.50)

(r + 1)L̃
(−1)
r+1 (x, δ, ε) = −xL̃(1)

r (x, δ, ε), (4.51)

which are related to the folding Dr+1 → Br (2.6).
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5. Deformation of the Jacobi polynomial

5.1. Ar−1

For the Ar−1 case, the equilibrium position, i.e. the solution {q̄j } of the Ar−1 equation (2.83),
is the same as the original Sutherland system (2.31). Therefore, the polynomial describing the
equilibrium is same as the original Sutherland system, the Chebyshev polynomial of the first
kind Tr(x) (2.33). In other words, the Chebyshev polynomials are not deformed in the present
scheme.

5.2. B ′Cr

B ′Cr : For the solution {q̄j } of the B ′Cr equation (2.88), let us define

δ = tanh2 gM, α = tanh gS

tanh gM

+
tanh 2gL

2 tanh gM

− 1, β = tanh 2gL

2 tanh gM

− 1, (5.1)

and introduce a degree r polynomial in x having zeros at {cos 2q̄j }:

P (α,β)
r (x, δ)

def= 2−r

(
α + β + 2r

r

) r∏
j=1

(x − cos 2q̄j ). (5.2)

It is a deformation of the Jacobi polynomial (2.34) such that

lim
δ→0

P (α,β)
r (x, δ) = P (α,β)

r (x). (5.3)

The equation for the equilibrium (2.88) can be written as (we replace r by n)
n∏

k=1

1+δ
1−δ

cos 2q̄j + i 2
√

δ
1−δ

sin 2q̄j − cos 2q̄k

1+δ
1−δ

cos 2q̄j − i 2
√

δ
1−δ

sin 2q̄j − cos 2q̄k

=
√

δ cos 2q̄j + i sin 2q̄j√
δ cos 2q̄j − i sin 2q̄j

sin 2q̄j

1+cos 2q̄j
+ i(α − β)

√
δ

sin 2q̄j

1+cos 2q̄j
− i(α − β)

√
δ

sin 2q̄j

cos 2q̄j
+ i2(β + 1)

√
δ

sin 2q̄j

cos 2q̄j
− i2(β + 1)

√
δ
. (5.4)

Since q̄j can be restricted to 0 � q̄j � π/2, sin 2q̄j is sin 2q̄j = √
1 − cos2 2q̄j . From

this equation, for −1 � x � 1, we obtain the following functional equation for P
(α,β)
n (x, δ)

(n � 1):(√
δx − i

√
1 − x2

)(
(α − β)

√
δ(1 + x) + i

√
1 − x2

)(
2(β + 1)

√
δx + i

√
1 − x2

)
×P (α,β)

n

(
1 + δ

1 − δ
x + i

2
√

δ

1 − δ

√
1 − x2, δ

)
− (√

δx + i
√

1 − x2
)

× (
(α − β)

√
δ(1 + x) − i

√
1 − x2

)(
2(β + 1)

√
δx − i

√
1 − x2

)
×P (α,β)

n

(
1 + δ

1 − δ
x − i

2
√

δ

1 − δ

√
1 − x2, δ

)
= 2i

√
1 − x2(Anx

2 + Bnx + Cn)P
(α,β)
n (x, δ), (5.5)

because the LHS is i
√

1 − x2 times a degree n+ 2 polynomial in x with real coefficients which
vanishes at x = cos 2q̄j . Here An = A

(α,β)
n (δ), Bn = B

(α,β)
n (δ) and Cn = C

(α,β)
n (δ) are real

constants:

An = −(1 − δ)−(n−1) × 1
2 ((1 + (α − β)

√
δ)(1 + 2(β + 1)

√
δ)(1 +

√
δ)2n−1

+ (1 − (α − β)
√

δ)(1 − 2(β + 1)
√

δ)(1 −
√

δ)2n−1), (5.6)
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Bn = −(α − β)(1 + 2β)δ, (5.7)

Cn = (1 − δ)−n × 1
2 ((1 + (α − β)

√
δ)(1 + 2(β + 1)

√
δ)(1 +

√
δ)2n−1

+ (1 − (α − β)
√

δ)(1 − 2(β + 1)
√

δ)(1 −
√

δ)2n−1

− 2(α − β − 1)(1 + 2β)δ(1 − δ)n−1). (5.8)

The functional equation (5.5) contains all the information of the equilibrium. In the δ → 0
limit, this functional equation reduces to the differential equation of the Jacobi polynomial
(2.104).

The three-term recurrence (2.90) for the deformed Jacobi polynomial P
(α,β)
n (x, δ) is a

consequence of the functional equation (5.5) (see the appendix). The constants in (2.90) are

an = (β − α)(1 − δ)n−1

× 1

2
((1 + 2β)((1 + (α − β)

√
δ)(1 + 2(β + 1)

√
δ)(1 +

√
δ)2n−1

+ (1 − (α − β)
√

δ)(1 − 2(β + 1)
√

δ)(1 −
√

δ)2n−1)

+ 2(α − β − 1)(1 − 4(β + 1)2δ)(1 − δ)n−1) × 1

d2nd2n+2
, (5.9)

bn = 1

2
√

δ
((1 +

√
δ)n − (1 −

√
δ)n)

× 1

2
((1 + 2(β + 1)

√
δ)(1 +

√
δ)n−1 + (1 − 2(β + 1)

√
δ)(1 −

√
δ)n−1)

× 1

2
√

δ
((1 + 2(β + 1)

√
δ)(1 +

√
δ)2n−2 − (1 − 2(β + 1)

√
δ)(1 −

√
δ)2n−2)

× 1

2
((1 + (α − β)

√
δ)(1 +

√
δ)n−1 + (1 − (α − β)

√
δ)(1 −

√
δ)n−1)

× 1

2
√

δ
((1 + (α − β)

√
δ)2(1 + 2(β + 1)

√
δ)(1 +

√
δ)2n−2

− (1 − (α − β)
√

δ)2(1 − 2(β + 1)
√

δ)(1 −
√

δ)2n−2)

× dn

d2n−1d
2
2nd2n+1

, cn = 2−n

(
α + β + 2n

n

)
, (5.10)

dm = 1

2
√

δ
((1 + (α − β)

√
δ)(1 + 2(β + 1)

√
δ)(1 +

√
δ)m−2

− (1 − (α − β)
√

δ)(1 − 2(β + 1)
√

δ)(1 −
√

δ)m−2). (5.11)

Namely P
(α,β)
n (x, δ) satisfies

2(n + 1)(α + β + n + 1)

(α + β + 2n + 1)(α + β + 2n + 2)
P

(α,β)

n+1 (x, δ) + (x − an)P
(α,β)
n (x, δ)

+
(α + β + 2n − 1)(α + β + 2n)

2n(α + β + n)
bnP

(α,β)

n−1 (x, δ) = 0. (5.12)

In this case (5.1), the parameter ranges are δ > 0 and α > β > −1. So bn is
positive. From this three-term recurrence we obtain the difference equation for the generating
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function G
(α,β)
monic(t, x, δ) = ∑∞

n=0 tnP
(α,β)monic
n (x, δ),((

d2n−1d
2
2nd2n+1d2n+2

)∣∣
n→t ∂

∂t

(
∂

∂t
+ x

)
− (

d2n−1d
2
2nd2n+1d2n+2an

)∣∣
n→t ∂

∂t

+
(
d2n−1d

2
2nd2n+1d2n+2bn

)∣∣
n→t ∂

∂t

t

)
G(α,β)

monic(t, x, δ) = 0. (5.13)

It is interesting to note that the three-term recurrence (5.9), (5.10) simplifies drastically in
a ‘strong’ coupling limit,

gM → +∞ ⇐⇒ δ → 1, gL, gS : fixed, (5.14)

a0 = β − α

α + β + 2
, a1 = (β − α)(2β + 1)

(α + β + 2)(α − β + 1)
, an = 0, (n � 2), (5.15)

b1 = 4(β + 1)(α + 1 + (β + 1)(α − β)2)

(α − β + 1)(α + β + 2)2(2β + 3)
, b2 = α + β + 2

2(α − β + 1)(2β + 3)
,

bn = 1

4
, (n � 3). (5.16)

Cr : For the solution {q̄j } of the Cr equation (2.86), let us define

δ = tanh2gS, α = tanh 2gL

2 tanh gS

− 1, (5.17)

and introduce a degree r polynomial in x having zeros at {cos 2q̄j }:

C
(α+ 1

2 )
r (x, δ)

def= 2r

(
α − 1

2 + r

r

) r∏
j=1

(x − cos 2q̄j ). (5.18)

It is a deformation of the Gegenbauer polynomial (2.35) such that

lim
δ→0

C
(α+ 1

2 )
r (x, δ) = C

(α+ 1
2 )

r (x), (5.19)

and obviously it is a special case of P
(α,β)
r (x, δ) with definite parity,

C
(α+ 1

2 )
r (x, δ) =

(
2α + r

r

)(
α + r

r

)−1

P (α,α)
r (x, δ), C

(α+ 1
2 )

r (−x, δ) = (−1)rC
(α+ 1

2 )
r (x, δ).

(5.20)

The functional equation of C
(α+ 1

2 )
n (x, δ) is easily obtained from that of P

(α,β)
n (x, δ) and will

not be presented here. The three-term recurrence for C
(α+ 1

2 )
n (x, δ) reads

n + 1

2α + 2n + 1
C

(α+ 1
2 )

n+1 (x, δ) + xC
(α+ 1

2 )
n (x, δ) +

2α + 2n − 1

n
bnC

(α+ 1
2 )

n−1 (x, δ) = 0. (5.21)

B ′
r : For the solution {q̄j } of the B ′

r equation (2.85), let us define

δ = tanh2gL, α = tanh gS

tanh gL

− 1, (5.22)

and introduce a degree r polynomial in x having zeros at {cos 2q̄j }:

P̃ (α)
r (x, δ)

def= 2−r

(
α − 1 + 2r

r

) r∏
j=1

(x − cos 2q̄j ). (5.23)
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Obviously it is a special case of P
(α,β)
r (x, δ),

P̃ (α)
r (x, δ) = P (α,−1)

r (x, δ). (5.24)

The functional equation and three-term recurrence of P̃ (α)
n (x, δ) are obtained from those of

P
(α,β)
n (x, δ).

5.3. C ′
r

C ′
r : For the solution {q̄j } of the C ′

r equation (2.87), let us define

δ = tanh2gS, α = tanh gL

tanh gS

− 1, (5.25)

and introduce a degree r polynomial in x having zeros at {cos 2q̄j }:

C̃
(α+ 1

2 )
r (x, δ)

def= 2r

(
α − 1

2 + r

r

) r∏
j=1

(x − cos 2q̄j ). (5.26)

It is a deformation of the Gegenbauer polynomial (2.35) with definite parity

lim
δ→0

C̃
(α+ 1

2 )
r (x, δ) = C

(α+ 1
2 )

r (x), C̃
(α+ 1

2 )
r (−x, δ) = (−1)r C̃

(α+ 1
2 )

r (x, δ). (5.27)

The functional equation for C̃
(α+ 1

2 )
n (x, δ) (n � 1) reads(√

δx − i
√

1 − x2
)(

(α + 1)
√

δx + i
√

1 − x2
)2

C̃
(α+ 1

2 )
n

(
1 + δ

1 − δ
x + i

2
√

δ

1 − δ

√
1 − x2, δ

)
− (√

δx + i
√

1 − x2
)(

(α + 1)
√

δx − i
√

1 − x2
)2

× C̃
(α+ 1

2 )
n

(
1 + δ

1 − δ
x − i

2
√

δ

1 − δ

√
1 − x2, δ

)
= 2i

√
1 − x2(Anx

2 + Bnx + Cn)C̃
(α+ 1

2 )
n (x, δ). (5.28)

Here An = A
(α+ 1

2 )
n (δ), Bn = B

(α+ 1
2 )

n (δ) and Cn = C
(α+ 1

2 )
n (δ) are real constants:

An = −(1 − δ)−(n−1) × 1
2 ((1 + (α + 1)

√
δ)2(1 +

√
δ)2n−1 + (1 − (α + 1)

√
δ)2(1 −

√
δ)2n−1),

(5.29)

Bn = 0, (5.30)

Cn = (1 − δ)−n × 1
2 ((1 + (α + 1)

√
δ)2(1 +

√
δ)2n−1

+ (1 − (α + 1)
√

δ)2(1 −
√

δ)2n−1 − 2α2δ(1 − δ)n−1). (5.31)

This functional equation contains all the information of the equilibrium.

The deformed Gegenbauer polynomial C̃
(α+ 1

2 )
n (x, δ) satisfies the three-term recurrence

(2.90) (see the appendix) with

an = 0, (5.32)

bn = 1

2
√

δ
((1 +

√
δ)n − (1 −

√
δ)n)

1

22
((1 + (α + 1)

√
δ)(1 +

√
δ)n−1

+ (1 − (α + 1)
√

δ)(1 −
√

δ)n−1)2 dn

d2n−1d2n+1
, (5.33)

cn = 2n

(
α − 1

2 + n

n

)
,
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dm = 1

2
√

δ
((1 + (α + 1)

√
δ)2(1 +

√
δ)m−2 − (1 − (α + 1)

√
δ)2(1 −

√
δ)m−2). (5.34)

Namely C̃
(α+ 1

2 )
n (x, δ) satisfies

n + 1

2α + 2n + 1
C̃

(α+ 1
2 )

n+1 (x, δ) + xC̃
(α+ 1

2 )
n (x, δ) +

2α + 2n − 1

n
bnC̃

(α+ 1
2 )

n−1 (x, δ) = 0. (5.35)

In this case (5.25), the parameters are δ > 0 and α > −1. So bn is positive. From
this three-term recurrence we obtain the difference equation for the generating function

G(α+ 1
2 )(t, x, δ) = ∑∞

n=0 tnC̃
(α+ 1

2 )
n (x, δ) in a similar way to that of P

(α,β)
n (x, δ).

In a ‘strong’ coupling limit

gS → +∞ ⇐⇒ δ → 1, gL : fixed, (5.36)

the three-term recurrence (5.33), (5.34) simplifies drastically:

b1 = 1

(α + 2)2
, b2 = α + 1

(α + 2)2
, bn = 1

4
, (n � 3). (5.37)

5.4. Br

Br : For the solution {q̄j } of the Br equation (2.84), let us define

δ = tanh2gL, α = 2 tanh gS

2

tanh gL

− 1, (5.38)

and introduce a degree r polynomial in x having zeros at {cos 2q̄j }:

P̂ (α)
r (x, δ)

def= 2−r

(
α − 1 + 2r

r

) r∏
j=1

(x − cos 2q̄j ). (5.39)

It is a deformation of the Jacobi polynomial (2.34) such that

lim
δ→0

P̂ (α)
r (x, δ) = P (α,−1)

r (x). (5.40)

The functional equation for P̂ (α)
n (x, δ) (n � 1) reads

(√
δx − i

√
1 − x2

) (
α + 1

2

√
δ(1 + x) + i

√
1 − x2

)2

P̂ (α)
n

(
1 + δ

1 − δ
x + i

2
√

δ

1 − δ

√
1 − x2, δ

)

− (√
δx + i

√
1 − x2

) (
α + 1

2

√
δ(1 + x) − i

√
1 − x2

)2

× P̂ (α)
n

(
1 + δ

1 − δ
x − i

2
√

δ

1 − δ

√
1 − x2, δ

)
= 2i

√
1 − x2(Anx

2 + Bnx + Cn)P̂
(α)
n (x, δ). (5.41)

Here An = A(α)
n (δ), Bn = B(α)

n (δ) and Cn = C(α)
n (δ) are real constants:

An = −(1 − δ)−(n−1) × 1
2

((
1 + 1

2 (α + 1)
√

δ
)2

(1 +
√

δ)2n−1

+
(
1 − 1

2 (α + 1)
√

δ
)2

(1 −
√

δ)2n−1), (5.42)

Bn = 1
2 (1 − α2)δ, (5.43)
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Cn = (1 − δ)−n × 1
2

((
1 + 1

2 (α + 1)
√

δ)2(1 +
√

δ)2n−1 +
(
1 − 1

2 (α + 1)
√

δ
)2

(1 −
√

δ)2n−1

− (
1 + α2 − 1

2 (α + 1)2δ
)
δ(1 − δ)n−1

)
. (5.44)

This functional equation contains all the information of the equilibrium.
The deformed Jacobi polynomial P̂ (α)

n (x, δ) satisfies the three-term recurrence (2.90) (see
the appendix) with

an = (1 − α2)(1 − δ)n−1 d ′
nd

′
n+1

d2nd2n+2
, (5.45)

bn = 4
1

2
√

δ
((1 +

√
δ)n−1 − (1 −

√
δ)n−1) × 1

2
√

δ
((1 +

√
δ)n − (1 −

√
δ)n)

d ′ 4
n dndn+1

d2n−1d
2
2nd2n+1

,

cn = 2−n

(
α − 1 + 2n

n

)
, (5.46)

dm = 1

2
√

δ

((
1 +

1

2
(α + 1)

√
δ

)2

(1 +
√

δ)m−2 −
(

1 − 1

2
(α + 1)

√
δ

)2

(1 −
√

δ)m−2

)
,

(5.47)

d ′
m = 1

2

((
1 +

1

2
(α + 1)

√
δ

)
(1 +

√
δ)m−1 +

(
1 − 1

2
(α + 1)

√
δ

)
(1 −

√
δ)m−1

)
. (5.48)

Namely P̂ (α)
n (x, δ) satisfies

2(n + 1)(α + n)

(α + 2n)(α + 2n + 1)
P̂

(α)
n+1(x, δ) + (x − an)P̂

(α)
n (x, δ)

+
(α + 2n − 2)(α + 2n − 1)

2n(α + n − 1)
bnP̂

(α)
n−1(x, δ) = 0, (5.49)

In this case (5.38), the parameters are δ > 0 and α > −1. So bn is positive. From
this three-term recurrence we obtain the difference equation for the generating function
G(α)(t, x, δ) = ∑∞

n=0 tnP̂ (α)
n (x, δ) in a similar way to that of P

(α,β)
n (x, δ).

In a ‘strong’ coupling limit

gL → +∞ ⇐⇒ δ → 1, gS : fixed, (5.50)

the three-term recurrence (5.45)–(5.48) simplifies drastically:

a0 = −1, a1 = 1 − α

α + 3
, an = 0, (n � 2), (5.51)

b1 = 0, b2 = 2(α + 1)

(α + 3)2
, bn = 1

4
, (n � 3). (5.52)

Dr : As in the Sutherland systems, the Dr is a special case gS = 0 of the Br theory described
by P̂ (−1)

r (x, δ), which has a zero at x = ±1 for r � 2.

Deformation of the identities. Before closing this section let us briefly discuss the deformation
of the identities between the Chebyshev and Jacobi polynomials (2.37), (2.38) and those
between the Jacobi polynomials (2.39). As remarked in section 5.1, the Chebyshev
polynomials describing the equilibrium of the Ar−1 systems are not deformed in our scheme.
Therefore, no deformation of the identities (2.37), (2.38) exists. The folding Dr+1 → Br (2.52)
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leads to the identity between the deformed Jacobi polynomials P̂ (α)
r (x, δ) (5.39) associated

with the Br systems

2(r + 1)P̂
(−1)
r+1 (x, δ) = r(x − 1)P̂ (1)

r (x, δ), (5.53)

which is a deformation of the identity (2.39). As remarked at the end of section 2.1, we have
not been able to deform the identities between the Gegenbauer and Jacobi polynomials (2.40),
(2.41) as they do not seem to have a root theoretic explanation.

Among the deformed Jacobi polynomials P
(α,β)
n (x, δ) for various α and β, two cases

(i) α = β = −1/2, (ii) α = −β = 1/2 are not deformed:

P (−1/2,−1/2)
n (x, δ) = P (−1/2,−1/2)

n (x), P (1/2,−1/2)
n (x, δ) = P (1/2,−1/2)

n (x). (5.54)

The first is the Chebyshev polynomial of the first kind Tn(x) ∝ cos nϕ, x = cos ϕ, as remarked
in section 5.1. The second case is P

(1/2,−1/2)
n (x) ∝ sin((2n + 1)ϕ/2)/ sin(ϕ/2), x = cos ϕ.

In both cases, the zeros of P
(α,β)
n (x) are equally spaced. There is a third case [4, 18] of

equally spaced zeros of the Jacobi polynomial P
(α,β)
n (x), for α = β = 1/2, corresponding to

the Chebyshev polynomial of the second kind Un(x) ∝ sin nϕ/ sin ϕ, x = cos ϕ, which is,
interestingly, deformed. We have no explanation to offer.

6. Summary and comments

We have derived certain deformation of the classical orthogonal polynomials (the Hermite,
Laguerre, Gegenbauer and Jacobi) describing the equilibrium of a class of multi-particle
dynamics, the Ruijsenaars–Schneider systems. The R–S systems are ‘good’ deformation of
the Calogero and Sutherland systems whose equilibrium points are described by the zeros of the
above classical orthogonal polynomials. As remarked in the text these deformed polynomials
do not belong to the q-deformed orthogonal polynomials [15] or their analogues [21].

The quality and quantity of the knowledge of these new polynomials are rather varied.
The one-parameter deformation of the Hermite polynomials, section 3.1, is best understood.
Its three-term recurrence (3.11) tells that it is the simplest possible deformation which reduces
to the original Hermite polynomial without rescaling etc in the zero deformation limit (δ → 0).
As shown in some detail in section 3.1, the generating function (3.14) and the weight function
(3.21) are known explicitly. Some identities connecting the Hermite and Laguerre polynomials
(2.20), (2.21) are nicely deformed (4.46)–(4.47), (4.48)–(4.49). It is interesting to note that
some non-trivial identities of the Hermite polynomials are preserved after deformation. For
example, the ‘addition theorem’ reads

∞∑
n1,...,nm=0
n1+···+nm=n

α
n1
1 · · ·αnm

m

n1! · · · nm!
Hn1(x1) · · · Hnm

(xm) = |α|n
n!

Hn

( α · x
|α|

)
, (6.1)

in which the following notation is used: α = t (α1, . . . , αm), x = t (x1, . . . , xm), |α| =√
α2

1 + · · · + α2
m, α · x = α1x1 + · · · + αmxm. The deformed version is

∞∑
n1,...,nm=0
n1+···+nm=n

α
n1
1 · · ·αnm

m

n1! · · · nm!
Hn1

(
x1,

δ

α2
1

)
· · · Hnm

(
xm,

δ

α2
m

)
= |α|n

n!
Hn

( α · x
|α| ,

δ

|α|2
)

. (6.2)

Both can be derived from the generating functions.
After a long and laborious search through existing literature, we find out that all the

deformed orthogonal polynomials introduced in the main text can be related to particular
members of the Askey-scheme of hypergeometric orthogonal polynomials [16].
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The deformed Hermite polynomial Hn(x, δ) is related to the Meixner–Pollaczek
polynomial P (λ)

n (x;φ) (section 1.7 of [16]):

Hn(x, δ) = n!
√

δ
n
P

( 1
δ
)

n

(
x√
δ
; π

2

)
. (6.3)

This identification allows a simple expression of its general term in terms of a (truncated)
hypergeometric series 2F1:

Hn(x, δ) = in
√

δ
n
(

δ

2

)
n

2F1

(−n, 1
δ

+ i x√
δ

2
δ

∣∣∣∣∣ 2

)

= 2nin
n∑

k=0

(−1)k
(

n

k

) k−1∏
j=0

(
ix +

1√
δ

+
√

δj

)
×

n−1∏
j=k

(
1√
δ

+

√
δ

2
j

)
, (6.4)

which is deformation of (2.18). The two-parameter deformation of the Hermite polynomial
Hn(x, δ, ε) (3.27) is a special case of the continuous Hahn polynomial (section 1.4 of [16]):

Hn(x, δ, ε) = 2nn!
√

δ
n(

n − 1 + 2
δ

+ 2
δε

)
n

pn

(
x√
δ
; 1

δ
,

1

δε
,

1

δ
,

1

δε

)
. (6.5)

The (two-parameter) deformed Laguerre polynomial L(α)
n (x, γ, δ) (4.2) is the continuous dual

Hahn polynomial (section 1.3 of [16]) with rescaling:

L(α)
n (y2, γ, δ) = δn

n!
Sn

(
y2

δ
; 1

δ
, α1 + 1, α2 + 1

)
, (6.6)

in which α1 and α2 are the two roots of x2 − (α − 1)x + γ − α = 0. The (three-parameter)
deformed Laguerre polynomial L(α)

n (x, γ, δ, ε) (4.23) is the Wilson polynomial (section 1.1
of [16]) with rescaling:

L(α)
n (y2, γ, δ, ε) = δn

n!
(
n + α + 1

δ
+ 1

δε

)
n

Wn

(
y2

δ
; 1

δ
,

1

δε
, α1 + 1, α2 + 1

)
. (6.7)

The deformed Jacobi polynomial P
(α,β)
n (x, δ) (5.2) is a special case of the Askey–Wilson

polynomial (section 3.1 of [16]):

P (α,β)
n (x, δ) = 2−2n

(
α + β + 2n

n

)
(ab2qn−1; q)−1

n pn(x; a, b,−b,−1|q), (6.8)

q = 1 − √
δ

1 +
√

δ
= e−2gM , a = 1 − (α − β)

√
δ

1 + (α − β)
√

δ
= e−2gS ,

(6.9)

b2 = 1 − 2(β + 1)
√

δ

1 + 2(β + 1)
√

δ
= e−4gL .

The deformed Gegenbauer polynomial C̃
(α+ 1

2 )
n (x, δ) (5.26) is again a special case of the

Askey–Wilson polynomial (section 3.1 of [16]):

C̃
(α+ 1

2 )
n (x, δ) =

(
α − 1

2 + n

n

)
(a4qn−1; q)−1

n pn(x; a, a,−a,−a|q), (6.10)

q = 1 − √
δ

1 +
√

δ
= e−2gS , a2 = 1 − (α + 1)

√
δ

1 + (α + 1)
√

δ
= e−2gL . (6.11)
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Another deformation of the Jacobi polynomial P̂ (α)
n (x, δ) (5.39) is also a special case of the

Askey–Wilson polynomial (section 3.1 of [16]):

P̂ (α)
n (x, δ) = 2−2n

(
α − 1 + 2n

n

)
(a2qn−1; q)−1

n pn(x; a, a,−1,−1|q), (6.12)

q = 1 − √
δ

1 +
√

δ
= e−2gL, a = 1 − 1

2 (α + 1)
√

δ

1 + 1
2 (α + 1)

√
δ

= e−gS . (6.13)

In all these formulae the Pochhammer symbol (a)k = ∏k−1
j=0(a + j) and its q-extension

(a; q)k = ∏k−1
j=0(1 − aqj ) are used.

Various ‘strong’ coupling limits (5.14), (5.36) and (5.50) of the deformed Jacobi type

polynomials P
(α,β)
n (x, δ), C̃

(α+ 1
2 )

n (x, δ) and P̂ (α)
n (x, δ) simply correspond to the ‘crystal’ limit

q → 0+ of the Askey–Wilson polynomials (6.8), (6.10) and (6.12).
For all these polynomials discussed in the present paper, the general term can be expressed

in terms of various hypergeometric functions 2F1, 3F2, 4F3 and 4φ3. A Rodrigue type formula,
the generating function and the weight function etc can be written by using the general formulae
of the Askey-scheme of hypergeometric orthogonal polynomials [16].

As remarked repeatedly in the text, the equations determining the equilibrium positions,
(2.60)–(2.64), (2.69)–(2.73) and (2.83)–(2.89) look similar to the Bethe ansatz equation. For
the simplest spin 1/2 XXX chain with N sites, the Bethe ansatz equation reads

l∏
k=1
k �=j

q̄j − q̄k + 2i

q̄j − q̄k − 2i
=

(
q̄j + i

q̄j − i

)N

(j = 1, . . . , l), (6.14)

in which l � N is the number of up (down) spins. This looks similar to the rational A type
equations (2.60) and (2.69) with a special choice of the potential w(x) function, the Nth power
rather than linear or quadratic. The corresponding functional relation, Baxter’s t-Q relation,
looks very much like the functional equations (3.6) and (3.31). It would be interesting to
pursue the analogy further.
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Appendix: Relation between the functional equation and the three-term recurrence

In this appendix, we show the relation between the functional equation and the three-term
recurrence, without proof. Since the normalization of polynomials is irrelevant, we consider
monic polynomials fn(x) with real coefficients and without superscript ‘monic’.

The three-term recurrence of fn(x) (2.90) is

fn+1(x) = (x − an)fn(x) − bnfn−1(x) (n � 0), (A.1)

with f−1(x) = 0 and f0(x) = 1. The explicit forms of an and bn can be read from (3.10),
(3.34), (4.9)–(4.10), (4.31)–(4.32), (5.9)–(5.10), (5.32)–(5.33), (5.45)–(5.46).
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The functional equations for the deformed Hermite, Laguerre and Jacobi polynomials
have the following forms (n � −1):

Hermite: h(x)fn(x + i
√

δ) + εh(x)∗fn(x − i
√

δ) = 2i
1−ε

2 gn(x)fn(x), (A.2)

Laguerre: h(y)fn((y + i
√

δ)2) + εh(y)∗fn((y − i
√

δ)2) = 2i
1−ε

2 gn(y)fn(y
2), (A.3)

Jacobi: h(x)fn

(
1 + δ

1 − δ
x + i

2
√

δ

1 − δ

√
1 − x2

)
+ εh(x)∗fn

(
1 + δ

1 − δ
x − i

2
√

δ

1 − δ

√
1 − x2

)
= 2

(
i
√

1 − x2
) 1−ε

2 gn(x)fn(x), (A.4)

where ε is

ε = −1: Hn(x, δ),L(α)
n (x,γ,δ),L(α)

n (x, δ), L̃(α)
n (x,δ),P (α,β)

n (x, δ), C̃
(α+ 1

2 )
n (x, δ), P̂ (α)

n (x, δ),

ε = 1: Hn(x, δ, ε), L(α)
n (x, γ, δ, ε), L(α)

n (x, δ, ε), L̃(α)
n (x, δ, ε), C

(α+ 1
2 )

n (x, δ), P̃ (α)
n (x, δ).

The explicit forms of h(x) and gn(x) can be read from (3.6), (3.31), (4.5), (4.27), (5.5), (5.28)
and (5.41)4.

As the first step, we show the following property of the functional equations:

Proposition A.1. The solution of the functional equations (A.2)–(A.4), if exists, is unique up
to an overall normalization.

By this proposition, it is sufficient to construct one solution of each functional equation
explicitly. We will do this by using the three-term recurrence.

As the second step, we show the following relation:

Proposition A.2. Three-term recurrence (A.1) implies the relation (n � 0)5

Hermite: i
1+ε

2

√
δh(x)fn(x + i

√
δ)

= ((x − an)(gn+1(x) − gn(x)) + i
√

δgn(x))fn(x)

− bn (gn+1(x) − gn−1(x)) fn−1(x), (A.5)

Laguerre: 2i
1+ε

2

√
δyh(y)fn((y + i

√
δ)2)

= ((y2 − an)(gn+1(y) − gn(y)) + δgn(y) + 2i
√

δygn(y))fn(y
2)

− bn(gn+1(y) − gn−1(y))fn−1(y
2), (A.6)

Jacobi:
(
i
√

1 − x2
) 1+ε

2
2
√

δ

1 − δ
h(x)fn

(
1 + δ

1 − δ
x + i

2
√

δ

1 − δ

√
1 − x2

)

=
(

(x − an)gn+1(x) −
(

1 + δ

1 − δ
x − an

)
gn(x) + 2i

√
1 − x2

√
δ

1 − δ
gn(x)

)
fn(x)

− bn(gn+1(x) − gn−1(x))fn−1(x). (A.7)

4 The explicit forms of the function h(x) are derived from the equations for the equilibrium. For the deformed Hermite
polynomials, gn(x) are determined by the consistency of this functional equation. For the deformed Laguerre and
Jacobi polynomials, however, gn(x) are not determined uniquely by these functional equations. We have fixed gn(x)

by using some empirical knowledge of their lower degree members.
5 Although an vanishes for the deformed Hermite cases, we keep an in this generic formula.
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In the proof of this proposition by induction, we encounter the equation,

Xn(x)fn(x) − Yn(x)bnfn−1(x)
?= 0 or Xn(y)fn(y

2) − Yn(y)bnfn−1(y
2)

?= 0.

(A.8)

Here Xn(x) and Yn(x) are as follows:
Hermite:

Xn(x) = (x − an)
2(gn+1(x) − gn(x)) − (x − an)(x − an+1)(gn+2(x) − gn+1(x)) − δgn(x)

− bn(gn(x) − gn−2(x)) + bn+1(gn+2(x) − gn(x)), (A.9)

Yn(x) = (x − an)(gn+1(x) − gn−1(x)) − (x − an−1)(gn−1(x) − gn−2(x))

− (x − an+1)(gn+2(x) − gn+1(x)), (A.10)

Laguerre:

Xn(y) = (y2 − an − δ)((y2 − an)(gn+1(y) − gn(y)) + δgn(y))

− (y2 − an)((y
2 − an+1)(gn+2(y) − gn+1(y)) + δgn+1(y)) − 4δy2gn(y)

− bn(gn(y) − gn−2(y)) + bn+1(gn+2(y) − gn(y)), (A.11)

Yn(y) = (y2 − an − 2δ)(gn+1(y) − gn−1(y)) − (y2 − an−1)(gn−1(y) − gn−2(y))

− (y2 − an+1)(gn+2(y) − gn+1(y)), (A.12)

Jacobi:

Xn(x) =
(

1 + δ

1 − δ
x − an

) (
(x − an)gn+1(x) −

(
1 + δ

1 − δ
x − an

)
gn(x)

)
− (x − an)

(
(x − an+1)gn+2(x) −

(
1 + δ

1 − δ
x − an+1

)
gn+1(x)

)

−
(

2
√

δ

1 − δ

)2

(1 − x2)gn(x) − bn(gn(x) − gn−2(x)) + bn+1(gn+2(x) − gn(x)),

(A.13)

Yn(x) =
(

1 + δ

1 − δ
x − an

)
(gn+1(x) − gn−1(x)) + (x − an−1)gn−2(x)

−
(

1 + δ

1 − δ
x − an−1

)
gn−1(x) − (x − an+1)gn+2(x) +

(
1 + δ

1 − δ
x − an+1

)
gn+1(x).

(A.14)

It is easy to see Xn(x) = Yn(x) = 0 by using the explicit forms of an, bn and gn(x).
As the third step, we show the following:

Proposition A.3. The polynomial defined by the three-term recurrence (A.1) satisfies the
functional equations (A.2)–(A.4).

Therefore we obtain the following:

Proposition A.4. The polynomial defined by the functional equations (A.2)–(A.4) satisfies the
three-term recurrence (A.1).
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